Preferred Citation: . The Oceans, Their Physics, Chemistry, and General Biology. New York:  Prentice-Hall,  c1942 1942. http://ark.cdlib.org/ark:/13030/kt167nb66r/


 
Marine Sedimentation

DISTRIBUTION OF PELAGIC SEDIMENTS

General Features of Distribution. Figure 253 shows the distribution of the various types of pelagic sediments. The representation is generalized partly to avoid confusion and partly because of the incomplete knowledge as to the types of sediments found in many parts of the oceans. Any such presentations of the distribution of pelagic sediments are modified versions of maps originally prepared by Sir John Murray and his associates. Further investigations have changed the boundaries but have not materially affected the general picture. The figure has been prepared from the most recent sources available. The distribution of sediments in the Indian Ocean is based on a map by W. Schott (1939a), that in the Pacific Ocean is from W. Schott in G. Schott (1935), with some revisions based on Revelle's studies of the samples collected by the Carnegie (Revelle, 1936). The data for the Atlantic have been drawn from a number of sources, since no comprehensive map has been prepared for many years. The Meteor material has been described by Correns (1937 and 1939) and Pratje (1939a). Thorp's report (1931) on the sediments of the Caribbean and the western North Atlantic was used for those areas, and Pratje's data (1939b) for the South Atlantic were supplemented by those of Neaverson (1934) for the Discovery samples. The distribution in the North Atlantic is from Murray (Murray and Hjort, 1912).


975
figure

Distribution of the various types of pelagic sediments.


976

One type of shading has been used for all of the calcareous sediments and another for the siliceous sediments. Unless the symbol P is shown to indicate that the area is covered with pteropod ooze, it is to be understood that the calcareous sediment is globigerina ooze. The siliceous organic sediments are indicated as D for diatom ooze and R for radiolarian ooze. The unshaded areas of the oceans and seas are covered with terrigenous sediments.

Various features of the distribution of pelagic sediments should be pointed out:

  1. Pelagic sediments are restricted to the large ocean basins.

  2. Red clay and globigerina ooze are the predominant types of deposits.

  3. Diatom oozes are restricted to a virtually continuous belt around Antarctica and a band across the North Pacific Ocean.

  4. Radiolarian ooze is almost entirely limited to the Pacific Ocean, where it covers a wide band in the equatorial region.

  5. Pteropod ooze occurs in significant amounts only in the Atlantic Ocean.

  6. The width of the area of terrigenous sediments depends upon a number of factors such as the depth and the supply of material, but it should be noted that in general it is more extensive in high latitudes. The North Polar Basin and the seas adjacent to the northern Pacific and Atlantic Oceans are covered with terrigenous sediments. As will be shown later, the terrigenous sediments of lower latitudes are largely composed of calcareous remains of benthic organisms in contrast to those of higher latitudes, which are chiefly made up of mineral fragments.

  7. Although no depth contours are shown in fig. 253, comparison with chart I will show that the distribution of red clay and calcareous oozes is restricted to those portions of the ocean floor with moderate or great depths.

  8. The boundaries between different types of sediments are not distinct, since one form will graduate into another with interfingering where the topography is irregular. However, a glance at the figure will show that the marginal belts are small compared to the tremendous areas


    977
    of readily classified sediments, and it is for this reason that the system of classification can be considered valid.

Area of Ocean Bottom Covered by Pelagic Sediments. In table 106 are given the areas covered by the different types of pelagic sediments. The values were obtained from fig. 253. Pelagic sediments cover 268.1 × 106 km2 of the earth's surface, that is, 74.3 per cent of the sea bottom. The calcareous oozes (47.7 per cent), notably globigerina ooze, are the most extensive, with red clay (38.1 per cent) next in importance among the pelagic deposits. Siliceous oozes cover only 14.2 per cent of the total area.

AREAS COVERED BY PELAGIC SEDIMENTS (MILLIONS KM2)
Atlantic Ocean Pacific Ocean Indian Ocean Total
Area % Area % Area % Area %
Calcareous oozes:
  Globigerina 40.1 51.9 34.4
  Pteropod 1.5
    Total 41.6 67.5 51.9 36.2 34.4 54.3 127.9 47.7
Siliceous oozes:
  Diatom 4.1 14.4 12.6
  Radiolarian 6.6 0.3
    Total 4.1 6.7 21.0 14.7 12.9 20.4 38.0 14.2
Red clay 15.9 25.3 70.3 49.1 16.0 25.3 102.2 38.1
61.6 100.0 143.2 100.0 63.3 100.0 268.1 100.0

The percentages of the total area of pelagic sediments in the three oceans covered by the major types of sediments are as follows:

Sediment Indian Ocean Pacific Ocean Atlantic Ocean
Calcareous oozes 54.3 36.2 67.5
Siliceous oozes 20.4 14.7 6.7
Red clay 25.3 49.1 25.8
100.0 100.0 100.0

It will be seen that calcareous deposits predominate in the Indian and the Atlantic Oceans, but that in the Pacific Ocean, which is somewhat deeper, red clay is the most extensive. Of the total areas covered by the three major types of sediments the percentage distribution in the three oceans is as follows:


978
Sediment Calcareous oozes Siliceous oozes Red clay
Indian Ocean 26.9 33.9 15.7
Pacific Ocean 40.6 55.3 68.7
Atlantic Ocean 32.5 10.8 15.6
100.0 100.0 100.0

The Pacific Ocean, because of its great size, contains the largest percentage of all of the three types and actually over 50 per cent of the siliceous oozes and red clay.

Depth Range of Pelagic Sediments. Depth is generally considered as one of the factors controlling the distribution of the different types of marine sediments. According to Murray's classification, deep-sea sediments are restricted to depths greater than about 200 m, and in general pelagic sediments are found only at considerably greater depths. Although there is some difference in the depth distribution in the three oceans, data are not comparable, and the following values for globigerina and pteropod oozes and red clay are from Murray and Chumley (1924), representing the results of studies made on 1426 samples from the Atlantic Ocean. The values for diatom and radiolarian oozes are from Andrée (1920).

Sediment Samples Depth (m)
Minimum Maximum Average
Globigerina ooze 772   777 6006 3612
Pteropod ooze   40   713 3519 2072
Diatom ooze   28 1097 5733 3900
Radiolarian ooze     9 4298 8184 5292
Red clay 126 4060 8282 5407

Although the ranges overlap, indicating that factors other than depth control the distribution of pelagic sediments, it can be seen that radiolarian ooze and red clay are characteristic of depths greater than 4000 m, whereas the calcareous sediments and diatom oozes are generally restricted to the lesser depths.


Marine Sedimentation
 

Preferred Citation: . The Oceans, Their Physics, Chemistry, and General Biology. New York:  Prentice-Hall,  c1942 1942. http://ark.cdlib.org/ark:/13030/kt167nb66r/