On-Line Journals and the Web
Following the move of information to digital form, there have been many experiments with on-line journals. Among the best known projects of this sort are the TULIP project of Elsevier (Borghuis 1996) and the CORE project of Cornell, the American Chemical Society, Bellcore, Chemical Abstracts, and OCLC. These projects achieved more or less usage, but none of them approached the degree of epidemic success shown by the Web. The CORE project, for example, logged 87,000 sessions of 75 users, but when we ended access to primary chemical journals at Cornell, nobody stormed the library demanding the restoration of service. Imagine what would happen if the Cornell administration were to cut access to the Web.
In the CORE project (see Entlich 1996), the majority of the usage was from the Chemistry and Materials Science departments. They provided 70% of active users and 86% of all sessions with the journals. Various other departments at Cornell use chemical information (Food Sciences, Chemical Engineering, etc.) but make less use of the on-line journals. Apparently the overhead of starting to use the system and learning its use discouraged those who did not have a primary interest in it. Many of the users printed out articles rather than read them on-line. About one article was printed for every four viewed, and people tended to print an article rather than flip through the bitmap images. People accessed articles through both browsing and searching, but they read the same kinds of articles they would have read otherwise; they did not change their reading habits.
Some years ago the CORE project had compared the ability of people to read bitmaps versus reformatted text and found that people could read screen bitmaps just as fast as new text (Egan 1991). Yet in the actual use of the journals, the readers did not seem to like the page images. The Scepter interface provided a choice of page image or text format, and readers only looked at about one image page in every four articles. "This suggests that despite assertions by some chemists in early interviews that they particularly liked the layout of ACS journal pages, for viewing on-line they prefer reformatted text to images of those pages, even though they can read either at the same speed. The Web-like style is preferred for on-line viewing."
Perhaps it is not surprising that the Web is more popular than scientific journals. After all, Analytical Chemistry has never had the circulation among undergraduates of Time or Playboy. But the Web is not being used only to find out sports scores or other nonscholarly activities (30% of all Alta Vista queries are about sex;
|
Weiderhold 1997). The Web is routinely used by students to access all kinds of information needed in classroom work or for research. When I taught a course at Columbia, the students complained about reading that was assigned on paper, much preferring the reading that was available on the Web. The Web is preferred not just because it has recreational content but also because it is a way of getting scholarly material.
The convenience of the Web is obvious. If I need a chart or quote from a Mel-
lon Foundation report, I can bring it up in a few tens of seconds at most on my workstation. If I need to find it on paper and it isn't in my office, I'm faced with a delay of a few minutes (to visit the Bellcore library) and probably a few weeks (because, like most libraries, they are cutting back on acquisitions and will have to borrow it from somewhere else). The Web is so convenient that I frequently use it even to read publications that I do have in my office.
Web use is greeted so enthusiastically that volunteers have been typing in (or scanning) out-of-copyright literature on a large scale, as for example for Project Gutenberg. Figure 21.2 shows the number of books added to the Project Gutenberg archive each year in the 1990s; by comparison, in the entire 1980s, only two books were entered.
By comparison, some of the electronic journal trials seem disappointing. Some of the reasons that digital library experiments have been less successful than they might have been involve the details of access. Whereas Web browsers are by now effectively universal on campuses, the specific software needed for the CORE project, as an example, was somewhat of a pain for users to install and use. Many of the electronic library projects involve scanned images, which are difficult to manipulate on small screens, and they have rarely involved material that was designed for the kind of use common on computer systems. By contrast, most HTML material is written with the knowledge of the format in which it will be read and is adapted to that style. I note anecdotal complaints even that Acrobat documents as not as easy to read as normal Web pages.
Web pages in particular may have illustrations in color, and even animations, beyond the practical ability of any conventional publisher. Only one in a thousand pages of a chemical journal, for example, is likely to have a color illustration. Yet most popular Web pages have color (although the blinking colored ad banners might be thought to detract rather than help Web users). Also, Web pages need not be written to the traditional standards of publishing; the transparencies that represent the talk associated with a scholarly paper may be easier to read than the paper itself.
Such arguments suggest that the issue with the popularity of the Web compared with digital library experiments is not just content or convenience but also style. In the same way that Scientific American is easier to read than traditional professional journals, Web pages can be designed to be easier for students to read than the textbooks they buy now. Reasons might include the way material is broken into fairly short units, each of which is easy to grasp; the informal style; the power of easy cross-referencing, so that details need not be repeated; the extreme personality shown by some Web pages; and the use of illustrations as mentioned before. Perhaps some of these techniques, well known to professional writers, could be encouraged by universities for research writing.
The attractiveness of the newer Web material also suggests that older material will become less and less read. In the same way that vinyl records have suddenly become very old or that TV stations refuse to show black-and-white movies, libraries may find that the nineteenth-century material in many libraries disappears
from the view of the students. Mere scanning to produce bitmaps results in material that cannot be searched and does not look like newly written text; scanning may produce material that, although more accessible than the old volumes, is still not as welcome to students as new material. How much conversion of the older bitmaps can be justified? Of course, many vinyl recordings are reissued on CD and some movies are colorized, but libraries are unlikely to have resources to do much updating. How can we present the past in a way that students will use? Perhaps the present will become a golden age for scholars because nearly the entire world supply of reference books will have to be rewritten for HTML.