previous sub-section
INTRODUCTION: ELECTRONIC PUBLISHING, DIGITAL LIBRARIES, AND THE SCHOLARLY ENVIRONMENT
next part

A Look into the Future: Questions But No Answers (Yet)

A key question is not whether electronic publishing will grow in the future at the expense of print-based publishing nor whether electronic access to scholarly materials in universities will account for an increasing share of all access to such materials. The answers to both these broad questions are clearly "yes." But some of the more important and interrelated questions are the following:[11] (1) How will the costs of electronic and conventional publishing evolve over time? (2) How will products be priced? (3) What kind of use will be made of electronic information products in teaching and in research? (4) How will the use affect the productivity of all types of academic activities? (5) What will be the bottom line for academic institutions as a result of the changes that are and will be occurring?

At present, the cost comparison between electronic and conventional publications may be ambiguous, and the ambiguity is due, in part, to our inability to reduce first-copy costs substantially: electronic publications save on fulfillment costs but require high initial investments and continued substantial editorial involvement. Andrew Odlyzko, in chapter 23, argues that electronic journals can be published at a much lower per-page cost than conventional journals, but this reduc-


10

tion does not appear to be happening yet. Even if we were able to reduce costs substantially by turning to electronic journals wholesale, the question for the future of library and university budgets is how the costs of electronic journals will increase over time relative to other university costs.

Curiously, most studies of the determinants of journal prices have focused on what makes one journal more expensive than another and not on what makes journal prices increase faster than, say, the prices of classroom seats.[12] If electronic journals were half the price of comparable print-based journals, universities could realize a one-time saving by substituting electronic journals for print-based ones; but if these journals increased in price over time as rapidly as paper journals, eventually universities would observe the same budget squeeze that has occurred in the last decade.

In speculating about the future evolution of costs, we can paint both optimistic and pessimistic scenarios. Hardware capabilities have increased enormously. PC processors have gone from 8-bit processors running at just over 4 Mhertz to 32-bit processors running at 450 Mhertz. Any given piece of software will run blindingly fast on a PC of the latter type in comparison with one of the former. But there is a continuing escalation of software: as soon as faster PCs appear on the market, more demanding software is created that will not perform adequately on an older PC. Will software developments continually make our hardware obsolete? If so, we may be able to carry out more elaborate functions, but some may not serve directly the objective of efficient access to scholarly information and all will be at the cost of an unending stream of equipment upgrades or replacements. On the other hand, some software improvements may reduce first-copy costs directly. It is not difficult to imagine a "learned-paper-writing software" that has the feel of a Windows 95 application, with a drop-down menu that allows the user to select the journal in whose style the paper is to be written, similarly to select mathematical notation, and so on.[13] Perhaps under such circumstances editing and copyediting might consist of little more than finding errors of logic or substance. Furthermore, as the complexity of hardware and software grows, will the need for technical support staff continue to grow and perhaps represent an increasing share of the budget?[14] It would take a crystal ball to answer all these questions. The questions provide, perhaps, some justification for O'Donnell's skeptical paper in this volume about the possibilities of measurement at this early stage in the history of electronic libraries.

Other questions asked at the beginning of this section cannot be answered in isolation from one another. The usage made of electronic products-which, one imagines, will be paid for mostly by universities and other academic institutions- will depend on the price, and the price will clearly depend on the usage: as in the standard economic model, quantity and price are jointly determined, neither being the independent cause of the other. But it is certain that usage will lag behind the hype about usage. Miller (1997) cites a state legislator who believes that the entire holdings of the Harvard University library system have (already) been


11

digitized and are available to the public free of charge, and at least one East European librarian has stated that conventional library acquisitions are no longer relevant, since all important material will be available electronically.

In returning to the productivity puzzle, it is important to be clear about what productivity means. One may be awed by the fact that some 30 years ago the number of shares traded daily on the New York Stock Exchange was measured in the millions or perhaps tens of millions, whereas today a day with 700 million shares traded is commonplace. However, the productivity of the brokerage industry is not measured by the number of shares traded, but by the value added per worker in that industry, a figure that exhibits substantially lower rates of growth. Likewise, in instruction or research, productivity is not measured by the number of accesses to information but by the learning imparted (in instruction) or by the number of ideas or even papers generated (in research). If information gathering is a relatively small portion of total instructional activity (that is, if explanation of the underlying logic of an argument or the weaving of an intellectual web represent a much larger fraction), the productivity impact in teaching may end up being small. If information gathering is a small portion of research (that is, if performing laboratory experiments or working out solutions to mathematical models are much larger fractions), then the productivity impact in research may end up being low. And in these fundamental instructional and research activities there may be no breakthroughs resulting from the information technology revolution, just as you still need exactly four people to perform a string quartet and cannot increase productivity by playing it, say, twice as fast (see Baumol and Bowen 1966).

Teaching and research methods will change, but less rapidly than some may expect. The change will be more rapid if searching for the relevant information can be accomplished effectively. Effective search techniques are less relevant for instructional units (courses) in which the professor has canned the access procedures to information (such as the art course materials described in Bennett's paper in this volume). But individualized electronic products are not likely to sweep the broad ranges of academia: the specific art course at Yale, discussed by Bennett, is likely to be taught only at Yale despite the fact that it is similar to courses taught at hundreds of universities. For scholars who are truly searching for new information, Web searches that report 38,732 hits are not useful and suggest that neither students nor faculty members are well trained in effective search techniques.[15] It is fortunate that important new research into better search algorithms is being carried out. Librarians will play a vital role in this process by helping to guide scholars toward the best electronic sources, just as they have helped generations of scholars to find their way among print-based sources. This new role may, of course, require that librarians themselves redefine their functions to some extent and acquire new expertise; but these changes are happening anyway.

And what about the bottom line? This question is the most difficult one of all, and only the wildest guesses can be hazarded at this time. Taking a short-run or intermediate-run perspective (that is, a period of time up to, say, seven years from


12

now), we do not expect that the revolution in information technology is going to reduce university costs; in fact it may increase them. Beyond the intermediate horizon, things may well change. Hardware costs may decline even more precipitously than heretofore, software (including search engines) may become ever more effective, and the cost savings due to information technology that are not centered on library activities may become properly attributed to the electronic revolution. In the long run, the budgetary implications are probably much more favorable than the short-or intermediate-term implications. But what we need to emphasize is that the proper way of assessing the longer term evolution of costs is not by way of one part of an institution-say, the library-or even by way of an individual institution viewed as a whole system, but ideally by way of an interdependent multiinstitutional system. Just as electronic technology may provide a university with savings that do not fall within the traditional library budget, thus implying that savings are spread university-wide, so too will the savings be spread over the entire higher educational system. Even though some costs at individual institutions may rise, we are confident that system costs will eventually fall.


previous sub-section
INTRODUCTION: ELECTRONIC PUBLISHING, DIGITAL LIBRARIES, AND THE SCHOLARLY ENVIRONMENT
next part