Preferred Citation: Stroup, Alice. A Company of Scientists: Botany, Patronage, and Community at the Seventeenth-Century Parisian Royal Academy of Sciences. Berkeley:  University of California Press,  1990. http://ark.cdlib.org/ark:/13030/ft587006gh/


 
Chapter 13 Medical Motivations and Social Responsibility

Chapter 13
Medical Motivations and Social Responsibility

Although the Academy was an elite organization whose proceedings were private and secret, it was pulled toward the outside community as a result of both obligations and opportunities. Its responsibilities were intellectual, political, and social, while its opportunities included scholarly interchange with savants who were not members.

The Academy's foremost obligation was the intellectual one of advancing knowledge about the world, and to this end academicians researched and published their findings. In these respects the institution was an extension of the individuals who composed it and would have performed these activities anyway, but the institution facilitated their work.

The Academy's foundation entailed additional responsibilities, including the political one of honoring and serving the king, and these heightened the utilitarian propensities of its program. The political liabilities created by royal patronage were discharged by the Academy with every handsome publication or discovery, but also more particularly when academicians surveyed for the water supply of Versailles, tested the chemical composition of the waters supplying royal palaces, reviewed inventions with military, agricultural, or industrial potential, planned cartographic projects of the kingdom, or focused botanical research on medical applications. The Academy met its political responsibilities by associating the king's name with its accomplishments, by serving as technical consultant to the crown, and by studying ways to improve health and industry, navigation and cartography.


170

By comparison, the Academy's social responsibilities were less defined and less urgent. Most savants, academicians included, mouthed the maxim that natural philosophy would improve society, but fewer mounted concerted programs to achieve specific benefits. At the Academy, moreover, the distinction between responsibilities to the king and those to the populace would have been blurred by the traditional theories of kingship, which stressed the monarch's duties on behalf of his subjects. By serving the crown, the Academy was serving the kingdom. Yet academicians' own training and inclinations led them to go beyond this general tendency and to articulate a notion of accountability not only to Louis XIV and his subjects but even to all of humankind. They saw their work as potentially useful to medicine. Furthermore, religious inclination as well as the terrible condition of French peasants focused one academician's interests on a study of medicine for the poor.

Such political and social responsibilities were to some extent imposed on the Academy. Scholarly exchange, in contrast, was basic to the scientific community of which academicians were members. The Academy, however, acted sometimes as a barrier to exchange by regulating discourse between academicians and savants outside the Academy. The Academy had its own name to protect, in addition to the reputations of its individual members, and tried to control the flow of information to its and their advantage. Creation of the Academy altered the nature of dealings within the scientific community not only in Paris but also throughout France and Europe. The Academy's attributes and prerogatives turned some outsiders into admirers or skeptics, sycophants or rivals, aspirants or failures, while others remained disinterested fellow scholars.

The Academy's external relations and influence form the subject of the three chapters in this part. The first chapter provides a specific case study, focusing on how academicians discharged some of their responsibilities by combining medical interests with botanical research. With this as illustration, the second chapter considers the scientific community and its audience, and it canvasses the resources the Academy could rely on and contribute to in Paris. Finally, the third chapter examines the Academy's place in the local and international scientific communities.

The Academy's external relations had primarily an intellectual dimension but also included socioeconomic, religious, and chauvinistic aspects. Furthermore, savants claimed to seek the disinterested dissemination of knowledge but were also competing for priority, fame, and the rewards associated with success. Thus, the scope of the subject is so vast that it can


171

be treated only partially here, with botany providing the specific illustrations and context.

Medical Interests

The fields of botany and medicine were closely allied, and many botanists would have said of their discipline what Clave said of chemistry, that good health was its principal aim. The Academy rejected such a single-minded purpose and subordinated medical aims to scholarly ones. Nevertheless, medical interests remained important to academicians and decisively affected their research, partly because of their previous training and partly because of demands made by the Academy's protectors.[1]

Botanical research for medical purposes took several forms at the Academy. Academicians examined the nutritive value of plants, their uses as materia medica, and the hazards of ingesting diseased plants; they also investigated chemical medicine. Such research was important from an institutional point of view, because academicians used medical goals to shield their controversial and apparently unproductive research on plants. When asked to disband an obstinate project, academicians were able to continue some aspects of their research, albeit minimally, on the grounds that they were looking, as required, for its medical applications.

But medical goals were not an artificial construct intended only to conceal deeper, more controversial interests. On the contrary, the conviction that their activities were valuable to medicine unified a group of researchers whose approaches to botanical studies were sometimes incompatible. Academicians hoped to serve society by improving medical practice and by suggesting legislation to protect the health of the French populace. In 1689, for example, they investigated remedies for dysentery, a disorder that had afflicted Paris the year before.[2] Nowhere, however, is their sense of obligation to the public, and especially the poor, clearer than in Dodart's analysis of the cause of ergotism, as will be seen subsequently.

The continuity and strength of medical interests are explained in part by the education of the many academicians who had been trained as physicians, surgeons, or apothecaries. Seven of nineteen in 1667 had medical backgrounds. Claude Bourdelin had been apothecary to the Dauphin, had a shop for medicaments in Paris, and is said to have practiced medicine, although he was not a physician. Louis Gayant was a Paris surgeon who died serving the king's armies in that capacity. La Chambre, a graduate of Montpellier, was ordinary physician to Louis XIII and taught at the Jardin


172

royal; Duclos was ordinary physician to Louis XIV. Nicolas Marchant studied medicine at Padua, while Jean Pecquet took his degree at Montpellier, was physician to Fouquet, and was indebted to Gayant in his anatomical research.[3]

Before the reorganization in 1699, eleven more medical practitioners were appointed. Dodart, Jean Méry, and Simon Boulduc served members of the French royal family; Langlade was later first physician to the queen of Spain.[4] Homberg studied medicine at Padua and Bologna and took his degree at Wittenberg, while Moyse Charas, a Protestant apothecary who moved to England in 1685 and took a medical degree there, had attended Huygens during a serious illness in 1670 only to be lumped together with Huygens's physicians as being timid, ignorant, and reliant on "Galenical methods & prescriptions."[5] Du Verney had ties with the medical faculty at Avignon.[6] Of all the physician-academicians admitted before 1699, only Dodart, Tournefort, and Tauvry took degrees in medicine at the Parisian faculty, although others had ties of family and friendship with that faculty. Tournefort had studied at Montpellier and Orange before coming to Paris, and Tauvry took his first medical degree at Angers. The foreign associate Domenico Guglielmini was a doctor in medicine from Bologna, and nearly all that is known of Morin de Toulon is that he also was trained as a doctor.[7]

Members' medical training or experiences flavored their contributions to meetings of the Academy.[8] Several wrote books about Galenic and chemical medicines, mineral waters, and the treatment of specific illnesses, both before and after their entry into the Academy.[9] With 29 percent of its members before 1699 trained for medical professions, the Academy had a stronger representation of such interests than the Royal Society, where 14 to 20 percent of members between 1663 and 1687 were medical practitioners.[10] The domination of the biological sciences by medical practitioners was a most important characteristic of the Company, as of the biological sciences generally in Europe at this time.[11]

Had academicians' previous training and research not been enough to sustain their interest, there was also the stimulus of official pressure. This became acute in 1686, when Louvois criticized the Academy's work in botany and chemistry because it could not cure the king. Louvois wanted academicians to emphasize the practical, especially medical, uses of plants. In particular, he wanted them to challenge controversial empirics and hidebound faculties of medicine.[12] The last concern was a traditional strategy of royal patronage, whose iconoclastic favorites included Théophraste Renaudot, the Journal des sçavans , and the Jardin royal.[13]

Despite official encouragement, however, the Academy did not wish to


173

become an arbiter of medical theory and practice, although it did hope to improve medical knowledge.[14] It found earlier treatises deficient because their authors did not explain the effects of plants on humans, describe the frequency or size of doses, state for what illnesses a remedy was most appropriate, or explain when in the course of an illness to take the medicine.[15] Academicians proposed to remedy these defects by testing medicines, poisons, and antidotes on human subjects, but they were thwarted. Dodart wanted to try out antidotes on criminals condemned to death but could not obtain permission to do so; instead he suggested checking safe medicaments on humans and hazardous ones on animals.[16] Bourdelin planned in 1667 to assess all remedies listed in chemical treatises and to provide them to hospitals for experiments with patients, but he was barred from doing so by hospital guardians.[17] Instead academicians studied bloods, dissected cadavers, solicited advice from physicians, analyzed unfamiliar remedies chemically, and used as guinea pigs various animals, their own patients, and themselves.[18] The Academy also investigated chemical medicine, with Duclos a staunch advocate of potable gold and other controversial remedies.[19] Above all, members analyzed plants, selecting for study those believed to have medical or nutritional value.[20]

Although the Academy had no desire to challenge the medical faculties outright, its discussions of medical issues were empirical and thus antipathetic to the way French universities taught medicine.[21] Its work was implicitly reformist, moreover, for academicians tried to purify known medications, to produce new ones from distillants, and to publish hitherto secret cures.[22] The Academy embraced members with divergent positions,[23] and individual academicians were eclectic on medical issues, being neither strict Paracelsians nor unreformed Galenists. The Paracelsian Duclos used Galenic terminology to describe the action of drugs.[24] Dodart valued chemical analysis and sought new remedies from the distillants of plants, but his theory of digestion followed Galenic principles rather than contemporary acid-alkali theories.[25] Charas's pharmacopoeia promoted the chemical preparation of remedies from animal, vegetable, and mineral substances, especially by distillation, but allowed individual mineral cures on pragmatic grounds.[26] His empirical eclecticism is representative of the Academy's therapeutics.

Medical interests had both negative and positive effects on the Academy's research. The Academy established its scientific program to be independent of medical research. Yet its natural philosophical inquiries remained episodic partly because they were irrelevant to medicine. When the crown demanded that academicians address medical needs, this injured


174

the broader program without yielding many practical results. Yet no academician argued that the Academy should refuse to seek medically useful information, and in one important respect that search benefited the Academy. That is, in a Company split by personal rivalries and disparate ideologies, threatened during the 1680s by ministerial intervention, and discouraged by intransigent chemical analysis, medical interests were a unifying force. When other aims and activities foundered, research on plants for medical purposes was acceptable to government, chemists, botanists, and natural philosophers — indeed to all with responsibility for the activity and development of the Academy.

Ergotism, Illness of the Poor

The interplay of medical motivations and botanical research at the Academy is apparent in Dodart's study, published in 1676, of how ergot injured the health when ingested in bread. His research also clarifies how the Academy served as the focus for a network of physicians interested in the medical problems of the poor.[27]

Ergot grains grow on rye as the result of an infestation of the plant with Claviceps purpurea . The effect of this infection is to replace developing grain with ergot, a fungus that "contains several toxic principles," including the alkaloid lysergic acid diethylamide, or LSD.[28] When eaten after being ground with rye into flour, the fungus causes the deadly illness then known as Saint Anthony's fire and now called ergotism, which takes either a gangrenous or a hallucinogenic form.

Both ergot and the malady it causes were well known before Dodart wrote, although the connection between them was not. Descriptions of the symptoms and course of ergot poisoning were published by German authors in the 1590s and the first decade of the seventeenth century. Some writers confused ergotism with other illnesses, and some pointed out that bad food caused the attacks, but no one linked ergot grains to the illness they caused. Although some sixteenth- and seventeenth-century literature on ergot described its obstetrical uses or associated ergotism with the "honey-dew" stage of the fungus, Dodart was the first to publish the view that ergot grains caused Saint Anthony's fire and to explain why he thought so.[29]

Dodart's article and the Academy's research on ergot were stimulated by correspondence from physicians who already understood the causal relationship between ergot and Saint Anthony's fire. Four physicians — the Montpellier-trained N. Bellay, Paul Dubé, and a man named Tuillier and his


175

son — plus the surgeon Chatton sent the Academy their observations and samples of infected rye. All of them came from the rye-growing region of France that included the Sologne, Blois, and Montargis.[30] The correspondence began when the practitioners from Blois and Montargis wrote to Perrault and Bourdelin of their suspicions that spurred rye caused gangrene; they knew no warning signs of the illness and had found medication and surgery ineffective in treating patients. In 1674, after having received several communications, the Company instructed Dodart to investigate.[31]

The Academy's informants described the sufferings of patients afflicted with Saint Anthony's fire. The illness brought on "malignant fevers accompanied by drowsiness and dreams"; this was perhaps a reference to hallucination. It dried the milk of nursing mothers and "caused gangrene in the arms, and especially in the legs, which it usually struck first." Gangrene of the limbs was preceded by "a certain numbness in the legs," and as the illness continued its painful progress, physicians observed that there was

some swelling without inflammation, and the skin becomes cold and pallid. The gangrene begins in the center of the limb and appears in the skin only after a long time, so that it is often necessary to open the skin in order to find the gangrene inside.

Sometimes surgeons amputated the infected limb in the hope of halting the spread of the gangrene. If a limb was not amputated, it became "dry and thin, as if the skin were glued to the bones, and of a dreadful blackness, without rotting." Nonsurgical treatment included ardent spirits, volatile spirits, "orvietan," and a tisane of lupines.[32] If physicians could not agree on the course of the illness or the efficacy of various treatments, that was, according to Dodart, because the illness varied "according to time and place," which made it necessary to examine spurred rye from different areas in France.[33]

Ergotted rye had been found "nearly everywhere," but especially in "Sologne, Berry, the country around Blois," and in the Gâtinais. It was most likely to appear where the soil was light and sandy, and it was common "during wet years," and "especially when excessive heat followed a rainy spring."[34] Given these conjunctions, air, rain, and soil were the principal suspected causes of ergot. Based in Paris, the Academy could not test provincial air and rain, but Marchant grew rye in sandy soils brought to Paris from areas where ergot was common, and Bourdelin tested soils and grains.[35]

Dodart studied ergot grains and compared spurred rye with other cereals.[36] The fungus, called "ergot" in Sologne and "bled-cornu" in the


176

Gâtinais, appeared "black on the outside" and "rather white inside." When dried, it was harder and denser than rye grains, and Dodart found its taste not unpleasant. At the base of some ergot grains, he noticed "a substance with the taste and consistency of honey." This was the mucus, called "honey dew," which was the second or conidial stage in the development of ergot and which caused the growth of the sclerotium, or the ergot grain itself. "Infected grains" grew longer than normal grains, and Dodart observed that some were as large as thirteen or fourteen lignes long and two lignes wide. On a single blade there might be seven or eight spurs (plate 4).[37] Academicians and their contemporaries were uncertain whether ergot was the rye itself, distorted in shape and wholesomeness, or rather "foreign bodies produced among several grains of rye." Adherents of the former, incorrect view cited the resemblance of ergot to rye and the similar taste of breads made from ergot and from rye.[38]

Although it was widely doubted that the rotten rye caused the gangrenous sickness, Dodart believed that the absence of that malady except in persons who ate only rye bread, and the correlation between the appearance of ergot and the prevalence of the illness, argued in favor of ergot's being the cause. To verify this hypothesis, the Academy, like the elder Tuillier, ordered that bread made of ergot and rye be fed to animals.[39]

Dodart and his colleagues recognized that ergotism respected class lines. It was a malady of the country poor because rye bread was so important in their diet.[40] Seventeenth-century medical treatises routinely blamed mediocre food for illness among the poor.[41] Modern research has revealed just how bad that food was. In the Beauvaisis, a wheat-producing area, 75 percent of the peasants were "condemned to suffer hunger" in good years and "to starve to death" when the harvests were bad. The diet of peasants was not nutritious: it rarely included meat, milk, cheese, or fruit of good quality. Bread, gruel, and legumes formed the basis of a diet that was "both heavy and lacking in nutrition, insufficient during winter and increasingly so as spring approached."[42] The conditions in Beauvaisis resembled those in other areas of seventeenth-century France.[43]

Even during good years the peasants were chronically ill, and when times were bad, starvation and death were common. Thus, if the poor consumed rye they had grown themselves, hunger and ignorance prevented them from discarding spurred rye; sometimes hungry persons begged to be given the ergot already separated from rye, in order to make their flour go further.[44] Heavy demand for cereals, exacerbated by the army, large cities, and famine, tempted the unscrupulous to sell the ergot with rye.[45] Ignorance and circumstance led peasants to use rye infested with ergot.


177

figure

Plate 4. Ergotted Rye. (Plate 111 of Bulliard, Histoire des plantes vénéneuses et
suspectes de la France
. Paris: A. J. Dugour et Durand, [1798]; photograph
courtesy of Hunt Institute for Botanical Documentation, Pittsburgh.)


178

When poor harvests threatened starvation, the populace traditionally looked to government for relief, demanding official intervention against private hoarding and high prices. Local and royal governments accumulated stores of grain for sale when there was a dearth and attempted to prevent export of foodstuffs from a producing region whose own population required them for survival.[46] Operating within this tradition, Dodart recommended legislation and hoped local officials would prevent the use of ergot as food. The Academy would assist by studying spurred rye from every region in France, in order to correlate the variations in ergotism with differences in rye and ergot. Academicians would continue to publish their findings so that magistrates could warn the people about the danger, require that all grain be sorted, and forbid millers to grind rye mixed with ergot, "which is so easy to recognize that it is impossible to mistake it" for good rye.[47]

Dodart was probably the first to publish the connection between ergot and the gangrenous malady, and academicians and others continued his research in the eighteenth century.[48] But many medical practitioners rejected the claim that eating ergot caused Saint Anthony's fire, and ergot poisoning was neglected even in treatises that discussed malnutrition and famine.[49] Because maladies were defined in terms of symptoms rather than causes, Saint Anthony's fire was usually conflated with erysipelas, scurvy, and gangrene as a skin disease. Even Dubé explained Saint Anthony's fire simply as "a Mixture of bileous and pituitous Humours" without mentioning ingestion of ergot.[50] Dodart's important article, therefore, had only a limited effect on magistrates, medical practitioners, or the principal victims of the malady.

The Academy's medical interests and Dodart's awareness of the social discrimination of certain illnesses may suggest that the Academy was sensitive to the needs of Louis's most numerous but least privileged subjects. But academicians were isolated by birth and training from most of the populace. They were academicians because they were known personally or by reputation to those in power, and indeed many of the medical practitioners admitted to the Company had served the royal family in some capacity. Academicians analyzed meat, fish, vegetables, and fruits, but these foods mostly represented the diet of only a quarter of the population of France. The Academy's notion of social responsibility was mainly irrelevant to the needs of the poor.

The Jansenist Dodart was more interested than his colleagues in such problems: he studied medicine for the poor,[51] treated the poor free of charge, and died as a result of an illness contracted from one of his indigent


179

patients.[52] But his sympathies did not prevent him from approving the use of prisoners as guinea pigs. Attitudes molded by social class shaped academicians' concepts of their social responsibilities. Dodart's work on ergotism represents only a modest effort by the early Academy to develop knowledge and legislation in the interests of the poor. Academicians, like their contemporaries, sought to improve the lot of the poor through ad hoc measures and took the social order as given. Thus, the Academy's posture is consistent with the entire pattern of old-regime reform, which conceived change always within the context of contemporary social and political structures.[53]

Conclusion

Academicians hoped their work would have practical results, and especially that it would benefit health. Such considerations influenced the Academy's natural history of plants. Dodart's article relating spurred rye to ergotism epitomizes many features of the botanical studies of the seventeenth-century Academy, from its indebtedness to outsiders and use of chemical analysis to the medical interests that influenced its research. Academicians' search for the practical, medical benefits of their work stemmed from previous training and experience and also from the urgings of the Academy's protectors. By pursuing their medical interests, academicians could fulfill institutional responsibilities, protect their theoretical research when it was threatened, and put to good use their contacts with those outside the Academy. The nature of that external community and the character of the Academy's ties to it are addressed in the following chapters.


180

Chapter 13 Medical Motivations and Social Responsibility
 

Preferred Citation: Stroup, Alice. A Company of Scientists: Botany, Patronage, and Community at the Seventeenth-Century Parisian Royal Academy of Sciences. Berkeley:  University of California Press,  1990. http://ark.cdlib.org/ark:/13030/ft587006gh/