previous chapter
Chapter 5 Research Subventions and Ministerial Control
next part

Chapter 5
Research Subventions and Ministerial Control

By selecting and pensioning academicians and sustaining an extensive physical plant, the crown determined the general character of the Academy. Research subventions, however, gave the three ministerial protectors considerable authority over the actual content and conduct of basic research. While funding was often generous, levels of spending fluctuated in accordance with the requests of academicians, the preferences of protectors, and the health of the treasury. Some projects were supported more generously than others, a few being inherently more costly, others being more highly regarded. These factors affected funding and limited the research of the Academy to a smaller sphere than its explicit mission allowed.

Research subventions clarify the distinct roles played by Colbert, Louvois, and Pontchartrain. Colbert established practices — providing facilities, purchasing supplies, and sponsoring special voyages — that his successors adopted and modified. He treated the institution generously. Louvois and Pontchartrain, however, economized by discontinuing or reducing some of Colbert's favored projects. Each minister influenced research by directing funds into certain activities and withholding them from others. Colbert favored astronomy and practical projects, but he also funded natural history liberally and saw much of the Academy's work into print. Louvois, however, preferred natural history to astronomy, and despite his initial interest he canceled several publications. Pontchartrain was little more than a caretaker, funding inexpensive projects modestly and publishing manuscripts that academicians had written before his protectorship;


not until the eighteenth century could he revive the astronomical projects that Louvois had halted.

Expenditure on the Academy falls into three research categories and three chronological periods. The research categories are, first, the mathematical sciences, especially astronomy; second, natural philosophy, including anatomy, botany, chemistry, and mineralogy; and third, practical projects, such as mapping, mechanics, and surveying. The financial record scarcely reflects work in theoretical mathematics, however, and yields incomplete information in all research categories. Despite its usefulness, it is only a partial guide to the Academy's program.

The chronological periods correspond to the protectorships of Colbert, Louvois, and Pontchartrain. Colbert determined expenditure from 1666 until his death in September 1683. Louvois became responsible for the Academy the month Colbert died and began to authorize spending on its behalf that year, but he allowed payments for the Academy to fall into arrears. When Pontchartrain took charge in 1691, he demonstrated his good faith by immediately paying overdue items. Colbert and Louvois shared responsibility for expenditure during fiscal year 1683, therefore, while Louvois and Pontchartrain shared it during fiscal year 1691. Despite some ambiguities and lacunae the financial record permits comparison of the three ministerial protectors of the early Academy, and it helps review the early Academy's substantive accomplishments.

Colbert: The Generous Foundation

Overview .   From 1666 to 1683, Colbert spent 1,578,787 livres, or an average of 87,700 livres a year, directly on the Academy. Of that amount, 643,708 livres, or 41 percent, was for pensions to academicians and their assistants; 713,704 livres, or 45 percent, for the Observatory; and 221,374 livres, or 14 percent, for research (table 14). In addition, the Academy benefited from 207,349 livres spent jointly on it and other royal buildings and institutions (table 12).

The mathematical sciences were more costly than either natural philosophy or practical projects (table 14). Colbert spent 92,322 livres, or 42 percent of the research budget, on the mathematical sciences. By comparison he spent 56,110 livres for natural philosophy and 51,483 livres for practical projects, which accounted for 25 percent and 23 percent, respectively, of the research budget. The remaining 10 percent, or 22,231 livres, went toward expenses whose precise purpose is unknown (table 11).

The Mathematical Sciences .   The mathematical sciences dominated not


only the Academy's budget but also its membership. Twenty-two of the thirty-six academicians Colbert appointed, or 61 percent, were astronomers, geometers, or mechanicians. Colbert particularly favored the astronomers, who needed costly apparatus (table 3a, d), expeditions (table 4b, d), and engravings (table 9a–c). Many of the small expenses also paid for their work (table 11b–c).

The silver planisphere that Cassini and Butterfield made exemplifies the Academy's attitude toward theoretical astronomy. On its back was a mechanism that illustrated the Copernican, Tychonic, and Ptolemaic systems. The point was to show how similar the three systems were despite their very different hypotheses. This instrument symbolizes the fictionalist attitude of most academicians toward astronomical theories. A recurring theme in their writings is that it made little practical difference whether one accepted a heliocentric or a geocentric universe. This indifference to the underlying physical implications of competing astronomical theories helps explain why Cassini missed the point of reports from his assistants who had to shorten their pendulums near the equator. The Academy worried about publishing raw data and leaving hypothesizing to others, who would thereby unfairly gain credit to the detriment of the Company. But pragmatism and cosmological agnosticism led to just such a result and also turned the astronomers toward the practical projects that appealed to the crown.

Natural Philosophical Research .   Natural philosophy's share of the research budget did not reflect its share of the membership. Fourteen academicians, or 39 percent of Colbert's appointments, were botanists, anatomists, chemists, or natural philosophers. They controlled only 25 percent of the research budget, however, partly because they did not require expeditions or precision instruments. The laboratory (table 7), anatomical research (table 6a), and engravings (table 8) accounted for 88 percent of their funds and supported Perrault's comparative anatomy of animals, previous hit Dodart's next hit natural history of plants, Duclos's analyses of French mineral waters, and other inquiries. Small expenses (table 11a, c) also benefited these projects, while the costly burning mirror (table 3c) was peripheral to the Academy's research but interesting to the king.

Practical Projects .   The Academy was meant to be useful. Academicians expected their natural histories to improve medicine by correcting and amplifying pharmacopoeia, by clarifying human anatomy through comparative studies, or by identifying the components of mineral waters. Astronomy and mathematics too were no purely theoretical exercises but also the handmaidens of navigation and cartography. Colbert brought


Cassini from Italy and Huygens from Holland partly because they might solve the problem of determining longitude at sea, one of his interests as secretary of the navy and as champion of expanded overseas trade.[1] It is no surprise, then, that Colbert devoted a significant portion of the research budget to utilitarian interests.

There were four practical projects — technological, cartographic, architectural, and hydraulic — each of which the Academy sought to put on a sound theoretical foundation. Each also reflects the interests of the patrons. Colbert, for example, enlisted the Academy to reform industrial, agricultural, and military technology by charging members to study theoretical and applied mechanics. This work took three principal forms: academicians collaborated on a book about the principles of mechanics and their applications, they assessed inventions, and they collected models of machines (table 5).[2] Other projects had more immediate appeal to a vainglorious monarch. Architectural display, for example, glorified the reign. Thus, Colbert appointed to the Academy Perrault and Blondel, rival architects who designed several royal monuments, and Perrault's edition of Vitruvius illustrated classical architectural principles with buildings constructed by the crown (table 10b).[3]

The most important practical projects that Colbert initiated, however, were cartographic and hydraulic. Maps of France were notoriously inaccurate, yet Louis took pride in his kingdom and wanted to know its exact extent and Colbert needed correct maps to assist his economic and fiscal reforms. Colbert, therefore, appointed to the Academy astronomers and practitioners who could address this problem. They worked simultaneously on a world map and a map of the kingdom. For the former, they compiled the coordinates of cities and towns on both sides of the Atlantic, around the Mediterranean, and in the Far East, inking the sites onto the map on the Observatory floor. For the latter, they extended the meridian in France and mapped the Atlantic coast and the généralité, or administrative district, of Paris and its environs (tables 4a, 10a). As trial balloons for the map of France, these undertakings had three main advantages: the généralité de Paris was a small but central part of the kingdom, the Academy had established the meridian there (table 4b), and academicians could demonstrate vividly that extensive corrections to existing maps were necessary. Although these preliminary efforts were successful, they were also harbingers of the huge expenses that would be necessary to complete the map of the kingdom. Mapping the environs of Paris, for example, cost more than 21,000 livres, or 10 percent of Colbert's total spending on research (table 14), and took ten years to complete. Bringing the larger project to


fruition would require further extension of the meridian, triangulation along and then east and west of it, and topographic surveying, all associated with enormous costs. But from the mid-1670s, as Louis's wars deflected funds from the Academy, adequate funding was no longer available. For the remainder of the century academicians were armchair cartographers, correcting their world map with coordinates sent from abroad, teaching others to use the data and methods academicians had developed, and awaiting permission to revive work on the meridian.[4]

The hydraulic project provided direct support to king and court, for its goals were to guarantee the supply and quality of water for Versailles and to design fountains. The Academy surveyed rivers, analyzed the chemical composition of waters, studied hydraulic machines, and identified promising sites for aqueducts; members also developed the principles of decorative fountains for the gardens at Versailles. The work was costly, requiring surveying instruments, travel, and overnight accommodation. Academicians ran up bills of nearly 2,000 livres for incidentals, 3,500 livres for horses and carriages, and 1,335 livres for room and board at an inn in Versailles while they "worked to verify the surveying for the construction of aqueducts in the environs of Versailles" (tables 3b, 4c, 10e).[5]

Colbert relied on the Academy as a research institution and as a source of practical skills. Its members were physicians, surveyors, architects, and engineers, eager to improve those disciplines.[6] Pensions covered both theoretical and practical work, so that academicians were inexpensive consultants, even when the crown paid bonuses. The Academy could consider the work from several different angles, as its efforts on the water supply of Versailles reveal. From the crown's point of view, their interdisciplinary skills, commitment to theory and practice, and dependency on the king made academicians the ideal consultants.

Reimbursement of Academicians .   Although the royal treasury underwrote the costs of the Academy's research, academicians and their suppliers usually had to make extensive outlays and then request reimbursement. Only rarely did the crown advance funds, as when Mariotte got 200 livres for experiments related to the water supply of Versailles in 1682 (table 4c), or when Richer, Meurisse, and Deglos prepared for voyages (table 4d). Bourdelin's notebook offers a glimpse into the standard practices. He recorded the details of each purchase and every few months submitted a formal request, prepared by a notary, for repayment. Sometimes the crown paid him and his suppliers directly, but often it paid intermediaries such as Carcavi (or Homberg and Fontenelle in the 1690s).[7]

Academicians must have had some general authorization to purchase for


the Academy, but they needed special permission for certain items — for instance, engravings of plants — and requests for reimbursement had to provide details. Certain academicians acted as purchasing agents for the Academy. Thus, Perrault spent 4,000 livres, much of it probably for the natural history of animals (table 11a, 1674), and when Du Hamel went to London he bought 500 livres' worth of books and microscopes for the Academy (table 11a, 1669). But Couplet bore the heaviest responsibility for the institution's finances. He paid for many of the small expenses, purchasing animals for dissections, machines and apparatus for experiments, and seeing to repairs of equipment and physical plant at the Observatory (table 11). Finally, Nicolas Clérambault (table 11a), Carcavi, and Thévenot also bought for the Academy, sometimes mingling the Academy's and the Library's small expenses (table 12c–d).

Summary .   Colbert spent about 250,000 livres, or an average of 12,300 livres a year (table 14), on the Academy's research program. Expenditure fluctuated from year to year. It peaked from 1667 to 1672, because of astronomical expeditions, the map of the environs of Paris, and engravings. It plummeted from 1678 until 1683, because of the Dutch wars. During the 1660s and early 1670s, Colbert paid for expenses soon after they were incurred, but by the late 1670s, payments began to fall one or two years behind.

The Academy's research budget reflects Colbert's preferences. Astronomy and practical projects were clear favorites. The Academy was a reservoir of talent on which Louis and Colbert drew for technical expertise, and academicians themselves usually found scientific merit in these practical challenges. Far from being a disinterested and unalloyed supporter of basic research, Colbert demanded both practical and theoretical returns on the king's investment. By tapping the Academy for its technical advice and by reducing expenditure on the Academy during the last years of his ministry, Colbert set precedents for his successors that were more influential than his initial generosity.

Louvois: Declining Interest and Support

Overview .   Louvois was ministerial protector of the Academy from September 1683, when he bought the controllership of bâtiments from Colbert's son, until his death in July 1691. During these nine years he reduced the size and budget of the Academy, appointed representatives to convey his wishes, intervened to shape research, and finally lost interest in the Academy


as his personal standing with the king deteriorated. Although Louvois has been blamed for stressing utility over theory, he differed from Colbert and Pontchartrain only in degree. The damage Louvois did to the Academy came from his relative lack of interest in its work, from his reduction of financial support, and from his attempts to direct the methods of research, at least as much as from any imposition of utilitarian goals.

Louvois spent 238,354 livres, or an average of 26,484 livres a year, directly on the Academy. Of that amount, 171,833 livres, or 72 percent, was for pensions to academicians and their assistants; 12,335 livres, or 5 percent, for the Observatory; and 54,185 livres, or 23 percent, for research (table 15). In addition, the Academy benefited from 98,837 livres spent jointly on it and other royal buildings and institutions (table 12).

Natural philosophy cost more than the mathematical sciences and practical projects combined (table 15). Louvois spent 29,380 livres, or 54 percent of the research budget, on natural philosophy. In contrast he spent 16,510 livres for the mathematical sciences and 6,462 livres for practical projects, which accounted for 30 percent and 12 percent, respectively, of the research budget. The remaining 3 percent, or 1,832 livres, went toward transport of animals for dissection, repairs to equipment and lodging, and other expenses whose precise purpose is unknown (table 11). The institution's finances reveal a new set of ministerial preferences under Louvois, who redirected the Academy's efforts toward natural philosophy.[8]

Louvois spent less each year on the Academy than had Colbert. Colbert spent an average of 35,762 livres a year on pensions, Louvois only 19,093 livres. Colbert committed 39,650 livres a year to the Observatory, Louvois 1,371 livres. Colbert paid 12,300 livres a year for the Academy's research, while Louvois paid only 6,020 livres a year (table 17). These raw comparisons exaggerate Louvois's economy, however, for he took over an institution with quarters, equipment, and publications, whereas Colbert built the Academy from nothing.

Louvois inherited an intrinsically cheaper institution, but he also deliberately reduced the Academy's budget in several ways. To minimize pensions, the largest single expense once the Observatory was completed, Louvois diminished the number of academicians and the levels of their pensions. In addition, he simply halted cartographic expeditions[9] and research on determining longitude at sea. He also canceled plans to publish the Academy's astronomical and anatomical treatises.[10] Finally, he delayed payments, so that when he died a substantial debt had accumulated for which Pontchartrain became responsible. Academicians resented the cessations,


reductions, and delays and blamed Louvois and his wars for damaging the Academy.[11]

The Mathematical Sciences .   Although Louvois shifted more of the Academy's financial resources to natural philosophy, he appointed more mathematicians than natural philosophers. Thus sixteen of twenty-seven academicians during his protectorship were active principally in the mathematical sciences. Louvois also spent more on mathematical and astronomical instruments, which cost 13,440 livres, than on any other subcategory of research (table 15). Most of the instruments, however, equipped the Jesuit missionary-scientists whose researches in the Far East the Academy sponsored (table 3e). Louvois also paid for the last of the work on the meridian (table 4b) and for small expenses of the Observatory (table 11b).

Their expeditions canceled, the astronomers worked at the Observatory. They prepared earlier research for publication; studied eclipses, sunspots, the satellites of Jupiter and Saturn, and the parallax of Mars; analyzed reports from the provinces and abroad; and tested objective lenses of great focal lengths. Cassini wrote on the libration of the moon and the history of astronomy, and he made some observations in the north of France during the late 1680s.[12]

Louvois made Jesuit missionaries the Academy's proxies in the Far East. The Academy trained the Jesuits, who used their mathematical and astronomical knowledge as a passport into foreign lands. To repay their debt, the Jesuits sent the Academy data: measurements of latitude and longitude, astronomical observations, and reports about flora and fauna, calendars, alphabets, and numerical systems. Hoping to get accurate calculations of longitude for their world map, academicians had emphasized proper astronomical techniques, especially for observing the satellites of Jupiter. The crown fitted out the Jesuits lavishly with instruments (table 3e): the China mission of 1685 took along "books, mathematical instruments, pendulum clocks and other kinds of clocks," while a second group destined for China carried a large microscope with three lenses, two burning mirrors, one thermometer, one barometer, a mounted telescope with thirteen lenses, two pendulum clocks, and some mathematical instruments. The Siam and India mission was equipped with eighty-four telescope lenses, three burning mirrors, and other instruments as well, to judge from its reports. Nicolas Hartsoeker supervised production of the glassware for all these instruments.[13]

Unfortunately several obstacles impeded the scientific work of the


Jesuits. On the one hand, the voyages were long and unpleasant, the missionaries became ill, and two were imprisoned by the Dutch; much of their time was occupied in learning oriental tongues and in preaching. Some of the Chinese data were destroyed when the Dutch confiscated them and when a French ship was lost.[14] On the other hand, when French Jesuits extended the protection of the French king to other members of their order in the Far East, the foreign Jesuits sent their observations to the Academy as well. Despite problems the Jesuits provided much useful information in the 1680s and 1690s. From it Thomas Gouye, after consultation with academicians, edited two treatises on astronomical and mathematical topics and de Beze prepared a short pamphlet on flora and fauna.[15] These works were published under Louvois and Pontchartrain. Designed initially under Colbert to supplement the Academy's own cartographic voyages, the partnership between the Jesuits and the Academy became a substitute for the Academy's own expeditions.[16] Under Louvois the collaboration became an inexpensive vestige of the Academy's more ambitious projects, the legacy of Colbert's practice of enlisting officials to assist the Academy.

Natural Philosophical Research .   Natural philosophy commanded 54 percent of the Academy's research budget, but only 41 percent of the members under Louvois. Although Louvois spent more a year than Colbert on natural philosophy, he wasted one-third of the money on mediocre burning mirrors (tables 3c, 15). Despite that failure, however, Louvois favored natural philosophy in several ways. Planning to publish installments of the Histoire des animaux and Mémoires des plantes (table 8), he appointed a new anatomist, pensioned the engraver Chastillon for his services to the Academy, and allowed botanists to revise existing plates. He also increased Borelly's pension and supported the petit jardin (table 6b), and he personally instructed the Academy as to the conduct of research on plants. However, some good intentions were subject to retrenchment: he abruptly canceled publication of the Histoire des animaux in the late 1680s because he was absorbed in the war efforts and lost interest in the Academy.[17]

In addition to dissecting animals from the menagerie and preparing the ill-fated third volume of the natural history of animals, anatomists pursued more focused individual studies. They examined the eye and the ear, the circulation of the blood, digestion and the digestive tract, respiration, and the persistence of nervous reactions in dead animals. They also performed autopsies on several persons, young and old, military and civilian, including the painter Le Brun and their own Mariotte and Perrault.[18]

For the laboratory, which was central to the Academy's natural historical


research, the early years under Louvois were a period of crisis, caused by the infirmities of individual chemists. Duclos was disaffected by previous hit Dodart's next hit appropriation of the natural history of plants, his health was failing, and as a Protestant he was out of favor with Louvois, who did not pension him after 1684. Bourdelin worked in his own laboratory instead of the Academy's on grounds of age and ill health.[19] As a result, his expenses and reimbursements fell drastically (table 7a), the latter because Louvois refused to pay for Bourdelin's laboratory assistant. Bourdelin regretted that the right to work at home was tempered by an increased financial burden on himself:

It is noteworthy that I have been allowed to work at home for the Academy. At the same time, M. de La Chapelle has told me twice that I will not be paid for an assistant, even though I need one as much as if I directed the laboratory. But it is necessary to put up with this.[20]

The dwindling finances of chemical research chart the decline of Bourdelin but not necessarily of the laboratory. Borelly stepped into the breach, taking over the Academy's laboratory from Bourdelin and moving into Duclos's apartment, but no record of his expenses is known.

Practical Projects .   Although Louvois is reputed to have promoted utilitarian research at the Academy, he spent substantially less on it — both annually and as a percentage of the total he allocated to research — than had Colbert (tables 14, 15). Louvois continued only one of Colbert's projects generously: the survey of rivers for the water supply at Versailles (tables 3b and 4c). This he supervised attentively, promoting both its theoretical and its practical aspects. At his request, the Academy surveyed and planned diversions of rivers, sought the origins of rivers in springs and rainfall, studied hydraulic machinery, and translated Frontinus's treatise on Roman aqueducts.[21] Louvois's determination to water Versailles encouraged the Academy to study hydrology and bore fruit in papers by Sédileau, Varignon, and La Hire during the 1690s.[22]

Louvois compromised two other projects — maps and machines — that Colbert had initiated. The former he effectively gutted by canceling the extension of the meridian. As for the latter, Louvois was ambivalent. During his protectorship, the Academy assessed fewer inventions than it had previously,[23] and the collection of models disappeared as a distinct category of expenses in the buildings account (table 5). Moreover, Louvois refused to mount a public exhibition of the Academy's collection.[24] On the other hand, he pensioned the engineer Dalesme as inventor to the Academy (table 1, ii),[25] which continued to study new military, navigational, manufacturing, and timekeeping devices. Models of some machines were deposited


at the Observatory, so that the collection of models grew inexpensively during the 1680s. Above all, Louvois focused the Academy's attention on hydraulic technology, in order to advance his pet project of supplying Versailles with water.[26] In conclusion, Louvois defined the Academy's technical consultancy more narrowly than had Colbert, and he stressed the water supply of Versailles to the near exclusion of other practical projects.

Summary .   Louvois's protectorship was anomalous for the Academy. He maintained the institution, appointed a few new members, and added the Marly tower to the Observatory. He funded astronomical observations, research on natural history, and practical projects. His utilitarian demands on the Academy were single-minded, however, and he economized on the pensions of some new members and reduced expenditure in nearly all categories of research. Only for the natural histories did Louvois's average annual expenditure exceed that of Colbert. During his ministry, the imbalance of expenditure on astronomy and natural history shifted, with natural history receiving a larger share of the Academy's financial resources. Yet he undermined his own initiatives by canceling publications on anatomy and astronomy. Finally, Louvois injured the morale of the Academy by intervening ineptly into the research program. The problem was not that he altogether lacked interest in the Academy's work. Rather he was impatient for practical results. Overly close supervision, narrow goals, and reduced funding, followed by indifference in his final years, led to the decline of the Academy in the late 1680s.

Pontchartrain: A Penurious Revival

Overview .   When Pontchartrain assumed control of the Academy in 1691, it was badly demoralized.[27] Members were owed their pensions for 1689 and 1690, treatises actually in press had been suppressed, and the number of members had fallen. More sympathetic to science and technology than Louvois had been, Pontchartrain tried to revive the Academy by immediately appointing energetic and highly qualified savants, approving publications, and resuming pensions and research subventions. The War of the League of Augsburg, however, allowed him to fund the Academy only sporadically and at minimal levels throughout the 1690s.[28] As a result, financing for the Academy declined steeply. Pontchartrain has nonetheless been regarded as a champion of the Academy, because he preserved and revived it during difficult times, made shrewd appointments, and launched its most ambitious publishing program.


From 1691 through 1699, Pontchartrain budgeted 322,849 livres, or an average of 35,872 livres a year, directly on the Academy. Of that amount, 286,017 livres, or 88.6 percent, was for pensions to academicians and their assistants; 2,873 livres, or nearly 1 percent, for the Observatory; and 35,960 livres, or 10.5 percent, for research (table 16). Because the crown converted many pensions into annuities, however, the actual direct cash outlay was less than the amount budgeted (table lc). In addition, the Academy benefited from 80,887 livres spent jointly on it and other royal buildings and institutions (table 12).

Natural philosophy was more costly than the mathematical sciences or practical projects (table 16). Pontchartrain spent at least 10,747 livres, or 31.6 percent of the research budget, on natural philosophy. In contrast he spent 4,677 livres for practical projects and 2,811 livres for the mathematical sciences, which accounted for 13.8 and 8.3 percent, respectively, of the research budget. The remaining 46.3 percent, or 15,725 livres, went toward small expenses, a category that defies elucidation; most of this sum was paid in 1699, suggesting that the crown delayed reimbursing academicians for months or years (table 11). Since small expenses account for so much of Pontchartrain's research subvention, it is dangerous to generalize from the financial records about his preferences. Other indicators suggest that he treated the Academy evenhandedly and channeled academicians' energies into publishing more than into research.[29]

Although Pontchartrain continued to fund the Academy, no mean feat during what was arguably the worst decade of the reign, he did so at markedly reduced levels. He pensioned a smaller proportion of academicians and drastically reduced research subventions, even though he increased membership. He actually spent less in each category than had either Colbert or Louvois. First, while Pontchartrain budgeted an average of 31,780 livres a year for pensions — as compared with 35,762 livres under Colbert and 19,093 livres under Louvois — he actually disbursed less. That was because many academicians had to take their pensions for 1692, 1693, 1694, and 1695 as annuities. Pontchartrain's average annual outlay for pensions was, therefore, smaller than normal.[30] Second, Pontchartrain spent on average only 319 livres a year on the Observatory, in contrast with 39,650 livres under Colbert and 1,371 livres under Louvois. Colbert built the Observatory, Louvois added the Marly tower to it, and Pontchartrain maintained it and paid for the salary and livery of the porter. Third, Pontchartrain spent only 3,773 livres a year for research, by comparison with Colbert who spent an average of 12,299 livres a year and Louvois who spent 6,020 livres (table 17).


Pontchartrain revived the Academy as inexpensively as possible. From 1691 until 1694 he made new appointments and encouraged academicians to publish. In 1699 he sponsored a formal règlement and, finally, a new infusion of money, and in the following year he authorized Cassini and his team of astronomers to extend the meridian. Before 1699, Pontchartrain applied the limited funds available to pensions, publication, and maintenance. After 1699, he was able to expand the research program.

The Mathematical Sciences .   Like his predecessors, Pontchartrain appointed more mathematicians than natural philosophers. Thus twenty-four of thirty-nine academicians, or 62 percent, were active principally in the mathematical sciences. Like Louvois, however, Pontchartrain apparently spent little on their research, focusing on the maintenance of scientific instruments (table 3d). The only known special purchases are six telescope lenses made by Nicolas Hartsoeker and a pendulum clock "supplied to Sr Couplet the son for the observations he has been ordered to make in Portugal" (table 3a).[31]

The principal new impetus in the mathematical sciences came from infinitesimal calculus, which the mathematicians debated. The astronomers continued to work as they had done under Louvois. They observed eclipses and the satellites of Jupiter, compared eastern and western calendars, catalogued fixed stars, and calculated solar and lunar diameters. Cassini and his son made observations and studied the declination of a magnetic needle during their travels in Italy, France, Holland, and England from 1694 to 1698. Above all, the astronomers awaited permission to extend the meridian. In keeping with Pontchartrain's policy of publishing as much as possible, Cassini's memoirs, the reports of Jesuits in the Far East, and several astronomical articles were printed.[32]

Natural Philosophical Research .   Only fourteen of thirty-nine academicians, or 36 percent, were natural philosophers. But Pontchartrain seems to have spent more on their work than on the mathematical sciences. The record of expenditure is far from complete, however, with respect to the laboratory, the petit jardin,[33] and engravings (tables 6b, 7, 8, and 12i). Payments for botanical illustrations, for example, reflect neither the forty to sixty-nine plates, which normally cost 90 livres apiece, that Chastillon completed, nor the plates for Tournefort's Élémens de botanique, rumored to have cost 12,000 livres. If engravings actually cost 15,000 to 18,000 livres more than the treasury accounts reveal, then Pontchartrain's average annual expenditure on natural philosophy was closer to that of Louvois and Colbert.[34]

New academicians scrutinized previous chemical research. They also


studied mineralogy (table 6d) and tried fresh approaches to botany, notably Tournefort's influential classification of plants. Otherwise the Academy's natural philosophy continued under Pontchartrain much as it had during the previous two decades. Anatomists resurrected the third installment of their Histoire des animaux . They revised plates (table 8b) and dissected corpses from the menagerie at Versailles or from the Hôtel des invalides. Du Verney and Méry published several articles reflecting their dissections during the 1680s and 1690s, and the Academy debated their conflicting views about the circulation of the blood in the fetus. Homberg earned the gratitude of his colleagues for enlivening meetings with papers and demonstrations and with recollections from his travels.[35]

Practical Projects .   Utilitarian problems continued to interest academicians, who investigated hydraulics (table 5), mapping, new inventions, and military technology.[36] The crown subsidized these studies modestly, however, in order to launch two new projects — writing a natural history of arts and crafts and designing a new typeface for the Imprimerie royale — that complimented Pontchartrain's program of publishing. At first Bignon and Pontchartrain founded a separate Compagnie des arts et métiers to undertake this double mission. But in 1699 the Academy absorbed the Compagnie and its work, and that year alone the crown spent nearly 4,000 livres on engravings of arts and crafts (table 10d). By 1700 when Pontchartrain resumed work on the meridian, he had revived the two Colbertian projects that had lapsed under Louvois — cartography and mechanics — and thus reestablished the Academy's utilitarian program.[37]

Summary .   During the 1690s research expenditure primarily maintained buildings and equipment or continued older projects. What Pontchartrain paid for research bore little relation to what academicians published, which mostly represented work done earlier or outside the institutional structure of the Academy. But the Academy bore impressive fruit under this parsimonious management, with academicians publishing in mathematics, botany, astronomy, and other fields.

The Academy suffered from reduced funding and poor morale during the 1690s, but it was also undergoing basic changes in its very conception. Under Colbert academicians worked principally in teams on long-term projects begun with the assurance of continuity and support. But facilities were cramped, funding diminished, and collaborative research faltered; these trends emerged late in Colbert's protectorship and Louvois and Pontchartrain exacerbated them. Under the circumstances the institution altered. As individual research became more prominent, the functions of meetings changed: they lost their importance for proposing research,


debating hypotheses, and demonstrating experiments; instead academicians used them to referee manuscripts for publication. Thus the costs of research during the 1690s reflect the two inconsistent ministerial policies of austerity and rejuvenation, against the background not only of foreign wars and domestic insolvency but also of a changing institution.


The seventeenth-century Academy cost its royal patron at least 2,000,000 livres for pensions, the Observatory, and research subventions. It also benefited from nearly 400,000 livres spent on it and other royal establishments jointly. In principle, the Academy cost on average about 63,000 livres a year, with pensions representing the lion's share at 32,400 livres; the Observatory was in second place at 21,440 livres, and research was the least costly at 9,100 livres a year.[38] In fact, from Colbert to Pontchartrain the Academy's budget declined markedly, and under Pontchartrain academicians saw their pensions become annuities. Both trends had deleterious consequences for academicians personally and for their research.

Royal funding influenced the nature of the Academy's research as much as it did the character of the institution itself. Access to royal funds gave the Academy an advantage over other scientific societies, because it could mount ambitious collaborative projects. Yet the result was to limit the institution's scientific vision. Academicians and their protectors believed that theory would improve practice and that accumulating data was the necessary preliminary to hypothesizing. But collective projects gained a momentum of their own, so that theorizing was sometimes neglected in favor of practical applications. Furthermore, dependence on royal funding made research more vulnerable to ministerial interference, and this could be damaging when the protector failed to appreciate scientific priorities.

Finances, however, tell only part of the story. They mostly reflect the expensive, collaborative projects, but academicians also pursued more modest research as individuals, albeit with moral and material support from the Academy. Indeed, Carcavi and Huygens boasted that members "did not make enquiry into any one subject in particular but every one took unto his examination what suited best with his own fancy and genius."[39] How may such freedom of choice be reconciled with the facts of corporate planning and ministerial control? Three general points resolve this paradox. First, academicians agreed among themselves about the important questions, and they were in sympathy about the general aims of the


institution.[40] Second, because academicians believe that theoretical science should have practical benefits for society, they shared with their patrons various utilitarian expectations of the Academy. Third, the distinction between official and individual projects enabled an academician to work on several problems at once; team members cooperated on descriptions of plants or dissections, but an academician might also pursue specific interests such as the circulation of sap or the nature of hearing. This flexibility was available more readily in natural history than in astronomy, where the hierarchy of the Academy restricted the choices of some academicians, especially the students, who principally assisted others. Nevertheless, academicians used the company as a resource for work that interested them, and thus patronage for official projects also protected the individual projects of academicians.

To understand the Academy, however, it is necessary to look behind the scenes, to explore what royal funds actually bought, to observe the institution at work. The Academy's research on plants exemplifies many characteristics of the institution as a whole. It reveals conflicts between individual and collaborative projects, between theoretical and practical expectations, and between academicians and their protectors. Because botany was in flux, academicians were often uncertain of themselves: they had to adjust to the failure of their theories, test new instruments, and explore new analogies. Their research also offers a glimpse into the relations of this elite and somewhat secretive institution with the larger scientific and lay community. Thus, botanical research, a neglected but important aspect of the scientific revolution, may serve as a barometer of the institution as a whole.


previous chapter
Chapter 5 Research Subventions and Ministerial Control
next part