previous part
Chapter 2 Members and Protectors
next chapter

Chapter 2
Members and Protectors

The essential facts about the early Academy of Sciences are straightforward. It was founded in 1666 by Louis XIV at the behest of Jean Baptiste Colbert, minister of finance and of the navy, who championed the Academy until his death in 1683. Michel François Le Tellier, marquis de Louvois, minister of war, was responsible for the Academy from 1683 until his death in 1691. A less enthusiastic protector than Colbert had been, Louvois presided over a decline in the institution that academicians lamented. In 1691 Louis Phélypeaux de Pontchartrain succeeded Louvois as ministerial protector of the Academy. Although weak finances thwarted Pontchartrain's initial efforts to revive the institution, he sponsored a formal recognition and reorganization of the Academy in January 1699 that set the institution on a new footing. The thirty-three years from founding until reorganization provide the chronological focus of this book.

The Academy was organized hierarchically. The king was its patron and head. The ministerial protector was in charge of its funding, housing, and recruitment. Academicians were responsible for research and writing, and they also assessed new technology and advised the crown on technical matters. Academicians bore unequal honors and responsibilities. Two celebrities, the Dutch mathematician Christiaan Huygens and the Italian (later naturalized) astronomer Jean Dominique Cassini, had the highest pay and the greatest influence. Lower in the hierarchy were the regular working members — natural philosophers, anatomists, botanists, chemists, geometers, astronomers, mechanicians, and permanent secretaries — with


moderate pay. Their work ranged from the empirical to the theoretical, and they directed projects and administered the Academy. At the bottom were the student members, badly paid or not paid at all, who had ill-defined responsibilities and no formal path of advancement within the Academy. Some were mere assistants while others were independent researchers whose papers were highly regarded by fellow members. More ambiguous were the associate, honorary, or corresponding memberships available to savants who did not live in Paris. These posts were distinguished but lacked remuneration. Finally, academicians hired assistants who were not members of the Academy; these included the surgeon's or apothecary's apprentices who worked at dissections or in the laboratory, as well as the mathematicians who helped survey and map France. Rank in the Academy and access to the Academy's protectors were related.

From 1666 through 1696, the Academy established three formal administrative positions for its members. The first, created in 1666, was that of permanent secretary.[1] Its original occupant was Jean Baptiste Du Hamel, relieved by Jean Gallois for two years starting in 1668 and replaced in 1697 by Bernard Le Bovier de Fontenelle. The second post, that of president — a member who served as intermediary between academicians and ministerial protector — developed at first informally. Outsiders thought either Carcavi or Huygens was president in the early years. But Colbert had close ties to several academicians, and from the 1670s Du Hamel wrote annual reports for him.[2] Louvois used specific intermediaries, first the undependable abbé de Lannion[3] and later Henri Bessé de La Chapelle. They kept him up to date with the Academy's activities and informed academicians of his wishes. Pontchartrain formalized the arrangement when in 1691 he appointed Jean Paul Bignon with the title of president of the Academy. The third position to evolve was that of treasurer. It was an onerous post, requiring the occupant to pay the Academy's expenses out of his own pocket and then to request reimbursement from the crown. The Couplet family bore this responsibility, with Claude Antoine Couplet at first taking it on informally and finally in 1696 receiving the empty title that was surely insufficient recompense for his troubles.[4]

The Academy's purposes and activities were complex. As an academy of sciences, it studied mathematics, the nature of the world, and the principles of machines. As a royal institution, its work was to bring honor to the king and benefits to the kingdom. As a participant in the larger scientific community, it sought opportunities to exchange ideas and information.

Its activities were both regular and varied. The Academy met at the Bibliothèque du roi twice a week, on Wednesdays and Saturdays, except


for a six- to eight-week vacation in the fall. When the Academy was healthy, meetings lasted four or five hours, but when morale was bad, members could barely fill two hours.[5] Between meetings, academicians conducted research or tried to solve learned problems. They performed these tasks in the Bibliothèque du roi, in the Observatory, in the Jardin royal, at home, elsewhere in Paris and France, and abroad. The meetings were given over to reports, demonstrations, and discussions. Saturdays were reserved for natural philosophy, Wednesdays for mathematical sciences, and academicians were expected to attend and contribute to both. Minutes were kept for all of the seventeenth-century meetings except from 1670 through 1674.

The early Academy was small, as Le Clerc's formal portrait suggests. Sixty-two members were appointed before 1699, and there were never more than thirty-four, or fewer than nineteen, members in any given year. Since participants were fewer than those eligible to attend, the working Academy — numbering from one dozen to two dozen academicians — was intimate. Its size made the Academy susceptible to the influence of a few members, and new appointments affected research and morale. Thus, recruitment was crucial to the health of the Academy, yet the methods of and criteria for selecting academicians remain little known. From even the most minimal surviving biographical details of academicians — such as their regional origins, age at entry, education, and responsibilities outside the Academy — it is clear, however, that the careers of academicians reflect the usual patterns of education and advancement that prevailed in seventeenth-century France.

Composition of the Early Academy

The origins and careers of academicians exemplify several general trends in early modern France, indeed Europe.[6] These include regional disparities in literacy, the drift of provincial talent to large capital cities, the rise of the liberal professions in esteem and economic status, and government demand for the services of an educated elite.

Most academicians came from the north of France, where literacy was higher than elsewhere in France.[7] Of the forty-two French academicians whose birthplaces are known, 70 percent were born in northern France, including sixteen who were born in or near Paris.[8] Six came from Normandy, principally from cities — Rouen, Caen, Dieppe — but also from small towns in stock-breeding regions. Two came from the Maine, two from Anjou, and one each from Brittany and Burgundy. The twelve academicians


from the south came mainly from the Lyonnais, Languedoc, and Provence. Three were born in Lyon, and two nearby; Avignon, Toulon, and Aix-en-Provence each contributed an academician; and the rest came from small towns in Lower Languedoc, the Lower Auvergne, the Rouergue, and Lower Navarre.

Academicians tended to come from cities. Twenty-seven French academicians, or 64 percent of those whose birthplace is known, were born in cities, about half of them in Paris. The careers of many reflect the drain of provincial talent to the capital.[9] From 30 to 50 percent of each minister's appointments came to Paris from the provinces to establish themselves. Paris was a magnet not only for financiers, lawyers, and courtiers but also for ambitious intellectuals. Like London, it became a center of conspicuous consumption, a place where high culture was appreciated by the wealthy.[10] Once established, the Academy itself attracted savants to Paris, but by the eighteenth century Parisians dominated the working Academy.[11]

The education of academicians varied according to their social origins and the careers for which their families destined them. The marquis de l'Hospital kept his love of geometry a secret from other nobles of the sword, and the orphaned Bourdelin had to teach himself Latin and Greek. But the majority of academicians, like the other educated elite of the period, enjoyed a taste for letters and were trained in the classics. Such circles agreed that learning suited the magistracy and that the sciences were a kind of erudition, along with poetry, music, and letters. Older academicians, steeped in these traditions, could be torn by conflicting intellectual values. Thus they revered certain ancient accomplishments, but sought to dispel ancient misconceptions about nature. Claude Perrault, for example, translated Vitruvius and employed classical principles in his own architecture but used his dissections to disprove ancient claims about the salamander and the pelican. As a rule, academicians with a classical education were the theoreticians of the Academy and commanded higher pensions among the regulars.[12]

Within the social hierarchy of the realm, most academicians came from the upper half of the third estate and represented the liberal professions. Many served municipal or princely governments. Eighteen, or about 29 percent, were physicians, surgeons, or apothecaries. Twenty, or roughly a third, taught — as professors of mathematics at the University of Paris, as lecturers at the Jardin royal, as mathematics instructors to the youths of the Grande écurie, as teachers of hydrography in the port cities of Marseilles and Rochefort, and as tutors to members of the royal family. The royal treasury paid the stipends for many of these positions.


More than half the academicians had ties to government. At least thirty-eight served a royal, regional, or municipal government in some capacity. In addition to the teaching posts already mentioned at the Jardin royal and Collège royal, academicians held positions in the Bibliothèque du roi, served as royal almoner or as inspector of royal buildings, provided medical services to the French and Spanish courts, or were royal engineers. The families of a few boasted upwardly mobile councilors of state or members of parlement or the grand conseil and were among the wealthy and powerful bureaucratic elite. Some academicians participated in diplomatic missions. In these respects, the Academy was representative of natural philosophers throughout Europe in the late seventeenth century. Some of its members were known to the king or his ministers in an official capacity before they entered the Academy. Membership in the Academy also led to additional appointments. Thus, academicians were part of the power structure of seventeenth-century Paris.

Their regional origins, education, social rank, and access to persons of influence helped academicians discover their scientific aptitude and opened the doors of the Academy to them. But other savants with similar backgrounds did not become members of the Academy, so that contemporaries speculated about the criteria for admission. It was said that Paracelsians, Jesuits (under Colbert), and the regular clergy (under Pontchartrain) were excluded.[13] The earliest appointments clearly favored older men of stature, such as La Chambre, once the favorite of Séguier and Richelieu, at seventy years of age; Gilles Personne de Roberval, at sixty-four; Bernard Frenicle de Bessy at sixty-one; and Samuel Cottereau Duclos at sixty-eight.[14] Some of these savants served the Academy only briefly and sporadically, and by the late 1670s many of the original members were no longer active. Thereafter academicians tended to be younger, and the practice of nepotism meant that certain families established scholarly dynasties. As new members became noticeably younger, older academicians worried about a decline in the institution, concluding that membership was no longer a reward for achievement but an opportunity for developing talent.[15] Savants coveted membership in the Academy and tried to gain the attention of its protectors, but many were disappointed.

Students of Plants

Academicians as a group reflected broader trends. But it was as individuals that they made their mark on the Academy and the scholarly world, and it is as individuals that they will become familiar in the present study.


Of the sixty-two academicians appointed before 1699, twenty-two, or 35 percent, contributed to botanical studies, and it will be helpful to focus attention on them at a more personal level. This group included four botanists (Nicolas and Jean Marchant, Denis Dodart next hit, and Joseph Pitton de Tournefort), two natural philosophers (Edme Mariotte and Claude Perrault), five of the Academy's seven chemists (Claude Bourdelin, Jacques Borelly, Moyse Charas, Samuel Cottereau Duclos, and Guillaume Homberg), a mineralogist (Morin de Toulon), and two anatomists (Joseph Guichard Du Verney and Daniel Tauvry). Six academicians whose principal work was in the mathematical sciences (Jean Dominique Cassini, Jean Gallois, Christiaan Huygens, Philippe and Gabriel Philippe de La Hire, and Sédileau) also discussed plants. Finally, both permanent secretaries (Jean Baptiste Du Hamel and Bernard Le Bovier de Fontenelle) wrote extensively about botany in their histories of the early Academy.[16]

The principal designer of botanical research was Claude Perrault (1613–1688). He championed the term "la botanique," and his January 1667 proposal influenced botanical studies at the Academy for the rest of the century. He and his brothers advised Colbert, but the academician was no favorite of Louvois, who had Perrault's house razed to clear ground for a new library. A physician who practiced medicine only for family, friends, and the poor, and an architect who designed several royal structures including the controversial Observatory, Perrault directed the Academy's acclaimed Histoire des animaux and interpreted comparative anatomy mechanistically. The Perrault family, which counted Christiaan Huygens among its friends, was representative of the French upper middle class that supplied lawyers, scholars, and bureaucrats during the reign of Louis XIV.[17]

The second major botanical theorist was the Burgundian prior Edme Mariotte (c. 1620–1684), whose debate with Perrault about the circulation of sap exposed their different methods. While Mariotte was both theorist and experimenter, Perrault mostly speculated in the abstract about plants and borrowed Mariotte's data. Mariotte was a polymath who studied hydrostatics and air pressure, developed a theory of colors, and invented surveying instruments. His work was indebted to Boyle, some of whose writings he translated for the Academy, and to a network of scholarly correspondents from Aberdeen to Warsaw.[18]

The Academy's first chemical theorist was Samuel Cottereau Duclos (1598–1685). He designed and directed the Academy's laboratory in the Bibliothèque du roi. In it he studied mineral waters, analyzed the chemical constituents of plants and animals, and developed the alchemical ideas that


he abjured, along with his Protestant religion, in the last days of his life. One of Colbert's elder statesmen of science, he was disliked by Louvois, who did not pay his pension at the end. Before becoming an academician, Duclos had run his own laboratory in Paris; among his pupils was Nicaise Le Febvre, whose popular chemical textbook owed much to Duclos's methods.[19]

Denis previous hit Dodart next hit (1634–1717) directed the Academy's natural history of plants from the early 1670s until the 1690s. Much of previous hit Dodart's next hit other work in the Academy — on diseases of the poor, nutrition, and the effects of fasting — was stimulated by his medical, social, and religious concerns. previous hit Dodart next hit owed his place in the Academy, won before he was forty, to his connections with the Perrault family. He earned it by reviving the institution during its early slump. Known at the end of his life to the duke of Saint-Simon as a "very learned and quite saintly man," previous hit Dodart next hit was a committed Jansenist who used his medical consultations to the king to defend his coreligionists. His friends included Jean Racine, Antoine Arnauld, Pierre Nicole, the duc de Roannez, and others associated with Port Royal.[20]

Perrault, Mariotte, Duclos, and previous hit Dodart next hit dominated theoretical research on plants. But they depended on Claude Bourdelin to analyze plants in the laboratory and on Nicolas and Jean Marchant to cultivate and describe them.

Claude Bourdelin (1621–1699) was responsible for nearly all of the Academy's chemical analyses. He refined chemical techniques, especially for analyzing oils, and kept detailed records of his experiments and expenses. The Academy ignored his sole programmatic paper, however, partly because his ideas were too narrowly medical. Born near Lyon and orphaned at an early age, Bourdelin became an influential Paris apothecary and ensured good positions for his sons, in whose educations he enlisted Du Hamel and La Hire. He counted Racine among his friends.[21]

The Marchants, father and son, cultivated rare plants for the Academy's natural history. Together with previous hit Dodart next hit they also composed descriptions of plants, their cultivation, and uses. As previous hit Dodart's next hit role in the project grew, that of the Marchants shrank. Nicolas Marchant (?-1678) had served Gaston, duke of Orléans, and with Perrault encouraged the Academy to model its history of plants after work begun under the duke. Jean Marchant (?-1738) continued his father's work but never brought it to fruition; perhaps that is why Fontenelle wrote no eulogy for him.[22]

By 1689 Perrault, Mariotte, Duclos, and Nicolas Marchant were dead, and Bourdelin could not keep up his previous pace. In 1691 Pontchartrain appointed a chemist and a botanist to revitalize the Academy's botanical


research. The chemist was Guillaume Homberg (?-1715), who had nearly been admitted to the Academy by Colbert. He became an influential member, enlivening meetings with his varied papers and initial optimism about Bourdelin's analyses of plants. Homberg was also interested in mining, astronomy, scientific instruments and machines, history, and languages, including Hebrew. He learned by touring the continent, so that he could meet scholars and trade in scientific novelties. Like many contemporaries, he pursued his scientific interests against the wishes of his family. Happily, the Academy provided him a new family, for in 1708 he married previous hit Dodart's next hit daughter. An entrepreneur and risk-taker, Homberg's biography suggests his courage and strong will.[23]

The botanist Pontchartrain appointed was Joseph Pitton de Tournefort (?-1708), the most renowned of all the early Academy's researchers in this field and the first academician to travel abroad for botanical research. Tournefort's brief career was distinguished. Having arrived in Paris from Aix via Montpellier with Guy Crescent Fagon's support, he obtained appointments at the Academy, the Jardin royal, and the Collège royal. He published several influential books and developed the principal botanical taxonomy before Linnaeus. His interest in chemistry took him to Nicolas Lémery's courses and to Bourdelin's laboratory. Tournefort also collected shells, seeds, and fruits. He willed eight thousand dried plants to the king for the Academy's use and left his botanical books to Bignon, whose personal physician he had been.[24]

These academicians collaborated with one another in studying plants, but others made individual contributions. The latter were often more active in the mathematical section of the Academy. Their botanical contributions were episodic and peripheral and developed as a result of reading, observation, and conversation.

Jacques Borelly (?-1689) was interested in the chemical composition of soils and in plant nutrition, and he favored analysis by solvents. Overshadowed by Duclos and director of the laboratory for only a few years, Borelly never came into his own as a chemist at the Academy. Outside the Academy, Borelly attended Montmor's and Bourdelot's scientific meetings and explained chemical vocabulary to Antoine Furetière for the latter's dictionary. Borelly also published articles about astronomy and telescope lenses of his own manufacture. Cassini and Huygens had a low opinion of his lenses, but Louvois raised his pension and moved him into Duclos's apartment in the Bibliothèque du roi after the older chemist's death.[25]

Seventy-three when he joined the Academy, Moyse Charas (1619–1698) worked on poisons, antidotes, opium, and vipers. But he was more an


honored guest than a working academician. Charas had enjoyed a distinguished medical career in England, Holland, and Spain; he lectured on chemistry and published popular works on chemical techniques and pharmaceutics. Like Homberg, he was a Protestant whose appointment to the Academy followed his conversion to Catholicism.[26]

Joseph Guichard Du Verney (1648–1730) was the only academician before Tournefort to discuss Malpighi's ideas about plant physiology. Known for his treatise on the ear, he was the first to teach osteology and the diseases of bones at the Jardin royal, where his lecture-demonstrations were very popular. The son of a provincial doctor, he trained at Avignon and built his career in Paris. There he attended Lémery's course on chemistry and participated in Bourdelot's and Denis's scientific meetings. By dissecting the brain in these private societies, Du Verney earned his reputation as a promising young anatomist. Du Verney later became the dauphin's tutor in natural philosophy and entertained the court with his dissections. He willed a large collection of anatomical preparations to the Academy.[27]

Daniel Tauvry (1669–1701) analyzed resins and gums, plant products that were thought to come from sap. An anatomist who came from the provinces to build a career in Paris, he did not long survive his success, for he died less than three years after his appointment to the Academy. Although he attended meetings regularly and shared Du Verney's skepticism about Jean Méry's views on the circulation of the blood in the fetus, Tauvry contributed few papers to the Academy.[28]

Morin (?-1707), about whom little is known except that he came from Toulon, was appointed with the title of botanist but was more interested in mineralogy and porcelain. He was often absent from meetings of the Academy, but contributed a paper on a plant found in Provence.[29]

The mathematician Christiaan Huygens (1629–1695), the most highly regarded of all academicians, influenced botany by observing plants with his new scientific instruments. Huygens came from an influential and wealthy family in Holland. Best known for his work on clocks, theoretical mathematics, and light, his very presence dignified the Academy during its early years.[30]

The astronomer Philippe de La Hire (1640–1718) studied the rise of sap and the origins of petrified wood. A Parisian by birth and the son of the painter Laurent de La Hyre, La Hire taught mathematics at the Collège royal and was a member of the Académie royale d'architecture. For the Academy of Sciences, he worked on the extension of the meridian and the map of the kingdom, surveyed for the waterworks at Versailles, edited the


works of deceased colleagues for publication, and kept Huygens informed about the Academy after 1681.[31]

Gabriel Philippe de La Hire (1677–1719), son of Philippe, wrote a paper on how vines grip walls. He entered the Academy as a student astronomer at the age of seventeen and also followed in his father's footsteps by becoming professor royal of architecture.[32]

Sédileau (?-1693), whose first name and biography are unknown, studied orange trees and their diseases. A mathematician influenced by Ignace Gaston Pardies, Sédileau translated and annotated Frontinus's treatise on aqueducts, wrote meteorological and astronomical papers, designed several instruments, and fashioned the terrestrial map on the floor of the western tower of the Observatory.[33]

Even the astronomer Jean Dominique Cassini (1625–1712) contributed to the Academy's work on plants, if only by discussing the medical uses of plant products during the late 1680s, when other botanical research was largely eclipsed. Cassini was also interested in insects and blood transfusion and had visited the Accademia del Cimento. Like Huygens, he was a force to be reckoned with in the Academy: he built a formidable team of astronomers, began mapping the kingdom and the world, and in his seventy-sixth year traveled to the borders of France to extend the meridian. He kept Louis XIV interested in the Academy by stressing the practical applications of astronomical observations.[34]

Jean Gallois (1632–1707) contributed to botany indirectly. He publicized it by mentioning the Jesuits' observations of flora and fauna in a summary of their reports; more important, he encouraged academicians' research and argued for additional engravings of plants. A classicist and a geometer known for his elegant style, he wrote papers on an air gun and on geometry. This Paris-born abbot was member of the Académie française and professor of Greek at the Collège royal; he participated in Bourdelot's conferences, served as Colbert's librarian, and edited the Journal des sçavans .[35]

The two permanent secretaries — Jean Baptiste Du Hamel (1623–1706) and Bernard Le Bovier de Fontenelle (1657–1757) — influenced the Academy's research principally through their effect on corporate morale. They wrote scholarly and popular treatises — Du Hamel in Latin, Fontenelle in French — reviewed manuscripts for publication, wrote the Academy's history, and maintained the minutes. Both were Normans.

A lawyer's son who joined the Congregation of the Oratory, Du Hamel was royal almoner and held church posts before becoming an academician. On a diplomatic mission to England, he met Fellows of the Royal Society


and bought a microscope for the Academy, even though he had relinquished his academician's pension.[36]

Educated by the Jesuits and intended at first for a legal career, Fontenelle pursued a literary career. He became a member of the Académie française and the Académie des inscriptions and a popularizer of Cartesianism and the sciences. His history of the seventeenth-century Academy was both more and less than a translation of Du Hamel's Latin account, and he began the custom of issuing annual reports of the Academy's accomplishments and eulogizing academicians after their deaths.[37]

In summary, these academicians made different contributions to plant study. Their work ranged from abstract theory to rigorous experiment and observation, from suggestion to dedicated personal labor, from the traditional to the innovative, from the technical to the general. Although they represent different generations, they had much in common. All but two were French by birth, but only five were born in Paris. Most came from the upper ranks of the third estate, although two (Tournefort and Cassini) claimed to be gentlemen; the fathers of at least two (Perrault and Du Hamel) were lawyers. Several joined the Academy before the age of forty. Two (Jean Marchant and G. P. de La Hire) were the sons of academicians who had also contributed to the Academy's botanical research. Some had close ties to the Jansenists (previous hit Dodart next hit, Homberg, and Perrault). Three were Catholic clergy (Mariotte, Du Hamel, and Gallois), three (Charas, Duclos, and Homberg) converted from Protestantism, and the paternal grandmother of one (Tournefort) came from a Jewish family. Two (Tournefort and Homberg) studied the sciences despite their parents' wishes, two (Cassini and Homberg) became naturalized subjects of Louis XIV Bourdelin, La Hire, and Tournefort were orphaned or lost one parent before they were twenty. Most were polymaths and many were physicians. These academicians traveled, especially in France, England, and Italy, but also in Holland, Spain, eastern Europe, and Sweden. Many enjoyed other royal appointments or ties to government, as adviser to ministers, physician to members of the royal family, professor at the Collège royal, demonstrator at the Jardin royal, or royal almoner.

The Protectors and their Spokesmen

Responsibility for the Academy's successes and failures must be shared between the researchers and the protectors. The ministers and their spokesmen influenced research through appointments, financing, and interference,


both subtle and open. The king also affected the Academy, albeit in ways that are now often obscure.

As spokesmen, La Chapelle and Bignon kept the ministers informed about the Academy, submitted the estats requesting payment of pensions, and defended academicians' requests for additional financial support for research. They also conveyed the wishes of the protector to the Academy. Doing the job well divided their loyalties. Henri Bessé de La Chapelle (?-1694) was assistant (commis ) to Louvois, serving as controller general of royal buildings, inspector of fine arts, and overseer of the Academies of Sciences and Inscriptions. A member of both academies, he was a geometer in the former. Little is known of his life. Because Louvois's relations with the Academy were uneasy — he reduced its budget and size and mistrusted its members who were partisans of Colbert — the responsibilities of his spokesman were difficult. In January 1686, for example, La Chapelle criticized botanists and chemists on Louvois's behalf, unintentionally provoking a decline in the Academy's study of plants.[38]

Fortunately for the abbé Jean Paul Bignon (1662–1743), his uncle Pontchartrain was sympathetic to improving the Academy. A staunch advocate of the Academy, Bignon sought to regularize its procedures and increase its funding; he tried to ensure that it was treated fairly by comparison with the other academies. He recommended savants for membership, bolstering botanical research by selecting Tournefort and Homberg in 1691. Armed with reports on its personnel, projects, and expectations, he argued the Academy's case to Pontchartrain, citing precedent. The weak condition of the royal treasury forced Bignon to justify every request for funds and to appoint academicians without pensions. He pleaded for payment of what was owed academicians but was more successful in obtaining permission for them to publish. He proposed a merit system which Pontchartrain vetoed in favor of the seniority system.[39]

Bignon came from "a distinguished family of magistrates and royal librarians that stood at the very center of the robin society" in Paris. Like Du Hamel a member of the Congregation of the Oratory, Bignon's sinecures made him a wealthy man. In the eighteenth century, he directed the book trade, edited the Journal des sçavans , and became royal librarian. Thus, Bignon controlled much of French intellectual life from 1691 until his death.[40]

The three ministerial protectors of the Academy — Colbert, Louvois, and Pontchartrain — influenced research both deliberately and accidentally. Their appointments, financial support, persuasion, and encouragement to publish all affected institutional health. They arranged for special benefits


or assistance to the Academy through bureaucratic and diplomatic channels and could arbitrate disputes among academicians.[41] Each valued botanical studies differently.

Jean Baptiste Colbert (1619–1683) appointed fifteen of the Academy's students of plants and supported the natural history of plants generously until the early 1680s. He was interested in natural philosophy. Thus he invited academicians to his estate for learned conversations and visited the Academy well before the king did. But he was not above exploiting its members for familial advantage, for he had Du Hamel write the book that won Colbert's son admission to the Académie française.[42]

François Michel Le Tellier, marquis de Louvois (1639–1691) did not share Colbert's enthusiasm for the sciences or the Academy, and his awkward management demoralized the institution. Nevertheless, he favored the biological sciences, especially their medical applications and comparative anatomy. He appointed no new botanists or chemists, however, and canceled publications on anatomy and botany. His personal interest in certain subjects injured academic research by threatening its independence.[43]

Louis Phélypeaux de Pontchartrain (1643–1727) his family valued learning both for its own sake and for its benefits to the state. As protector of the Academy, he was serious about rejuvenating it as inexpensively as possible. He appointed six botanists and chemists and ordered them to investigate the natural history of plants. He also subsidized publication of Tournefort's treatises.[44]

Behind the scenes was the king. Advocate of personal rule, good at figures, interested in details, eager to catch out his ministers in an oversight, and fond of telling them what they already knew, Louis XIV (1638–1715) spent much of his day closeted with royal officials. The king's dislike of unfamiliar faces and his personal attention to the affairs of state gave certain ministers, including the three protectors of the Academy, great power.

Some of the Academy's projects must have pleased this monarch who loved gardens, rare plants, and exotic animals, who was vainglorious and hungry for tax revenue, and who sought to expand his kingdom. Academicians studied rare plants and dissected animals from the royal menagerie. They mapped both the tax district around Paris and the entire kingdom, and they studied military technology. Their elegantly illustrated books smoothed diplomacy when Louis presented them as marks of royal favor. When the king visited the Academy in 1681, academicians demonstrated some experiments and apparatus and gave him a list of manuscripts ready


for publication. But none of the botanical texts on the list was published. Indeed, academicians never got all the support they wanted, for the king's favor, ministerial interest, and the health of the royal treasury fluctuated.

For Louis the Academy was a potential source of honor and invention. Thus, he told Cassini that he wanted the Academy to make France as illustrious in the realm of letters as it was in warfare, and when Cassini explained how astronomy could reform geography and navigation, the monarch was attentive. Louis was curious to witness the spectacular or the curious, including the comet of 1664, a large burning mirror in 1669, and the dissection of an elephant in 1683. But Colbert persuaded him only with difficulty to visit the Academy in 1681 and the Observatory in 1682, and when rain interrupted the second visit the king never returned. There was little need for him to visit the Academy's headquarters, however, for the Academy came to court whenever Louis granted Cassini an audience, when previous hit Dodart next hit attended Louis as his physician, or when Du Verney and other academicians tutored members of the royal family. Louis ruled his kingdom personally, taking an interest in details and serving as his own prime minister and superintendent of finances, but his impersonal sponsorship of the Academy suggests that it was relatively unimportant to him. Although Louis approved of the Academy, had certain expectations of it, and was fascinated by some of its more arcane activities, he delegated the responsibility for running it almost entirely to the ministerial protectors.[45]

Like the kingdom of which it was part, the Academy had its place in a hierarchy of power and privilege. At the apex stood the king, with ministerial protectors mediating between him and the academicians. But the distinction between academicians and protectors went beyond relationships of power and responsibility and, as will be seen in the next chapter, permeated perceptions and expectations of the Academy.


previous part
Chapter 2 Members and Protectors
next chapter