previous sub-section
Linear Algebra Library for High-Performance Computers*
next sub-section

Transfer Rate

Table 2 lists the peak MFLOPS rate for various machines, as well as the peak transfer rate (in megawords per second).

Recall that the operation we were doing requires three references and returns two operations. Hence, to run at good rates, we need a ratio of three to two. The CRAY Y-MP does not do badly in this respect. Each

 

Table 2. MFLOPS and Memory Bandwidth




Machine



Peak
MFLOPS

Peak
Transfer (megawatts/
second)




Ratio

Alliant FX/80

188

22

0.12

Ardent Titan-4

64

32

0.5

CONVEX C-210

50

25

0.5

CRAY-1

160

80

0.5

CRAY X-MP/4

940

1411

1.5

CRAY Y-MP/8

2667

4000

1.5

CRAY-2S

1951

970

0.5

CYBER 205

400

600

1.5

ETA-10G

644

966

1.5

Fujitsu VP-200

533

533

1.0

Fujitsu VP-400

1066

1066

1.0

Hitachi 820/80

3000

2000

0.67

IBM 3090/600-VF

798

400

0.5

NEC SX-2

1300

2000

1.5


247

processor can transfer 50 million (64-bit) words per second; and the complete system, from memory into the registers, runs at four gigawords per second. But for many of the machines in the table, there is an imbalance between those two. One of the particularly bad cases is the Alliant FX/80, which has a peak rate of 188 MFLOPS but can transfer only 22 megawords from memory. It is going to be very hard to get peak performance there.


previous sub-section
Linear Algebra Library for High-Performance Computers*
next sub-section