Myrias SPS-2:
Virtual Memory on a Distributed System
The Myrias SPS-2 system was introduced in Gary Montry's presentation earlier in this session. It is a typical distributed-memory machine, based on local nodes (Motorola MC68020) with some memory associated
and connected by busses organized in a three-level hierarchy. The SPS-2 has the remarkable feature that it supports a virtual shared memory, and that feature is what we want to focus on here. For further details on the SPS-2, see McBryan and Pozo (1990).
On the system side, virtual shared memory is implemented by the Fortran compiler and by the run-time system. The result is to present a uniform 32-bit address space to any program, independent of the number of processors being used. From the user's point of view, he can write a standard Fortran F77 program, compile it on the machine, and run it as is, without any code modification. The program will execute instructions on only one processor (assuming it is written in standard Fortran), but it may use the memory from many processors. Thus, even without any parallelization, programs automatically use the multiple memories of the system through the virtual memory. For example, a user could take a large Cray application with a data requirement of gigabytes and have it running immediately on the SPS-2, despite the fact that each node processor has only eight megabytes of memory.
With the sequential program now running on the SPS-2, the next step is to enhance performance by exploiting parallelism at the loop level. To parallelize the program, one seeks out loops where the internal code in the loop involves no data dependencies between iterations. Replacing DO with PARDO in such loops parallelizes them. This provides the mechanism to use not only the multiple memories but also the multiple processors. Developing parallel programs then becomes a two-step refinement: first, use multiple memories by just compiling the program, and second, add PARDOs to achieve instruction parallelism.
As discussed in the following section, the virtual-memory support appears to reduce SPS-2 performance by about 40 to 50 per cent. A lot of people would regard a 50 per cent efficiency loss as too severe. But we would argue that if one looks at the software advantages over long-term projects as being able to implement shared-memory code on a distributed-memory system, those 50 per cent losses are certainly affordable. However, one should note that the SPS-2 is not a very powerful supercomputer, as the individual nodes are MC68020 processors with a capacity of 150,000 floating-point operations per second (150 KFLOPS). It remains to be demonstrated that virtual memory can run on more powerful distributed systems with reasonable efficiency.
One other point that should be made is that we are not talking about virtual shared memory on a shared-memory system. The SPS-2 computer is a true distributed-memory system. Consequently, one cannot expect that just any shared-memory program will run efficiently. To run
efficiently, a program should be well suited to distributed systems to begin with. For example, grid-based programs that do local access of data will run well on such a system. Thus, while you can run any program on these systems without modification, you can only expect good performance from programs that access data in the right way.
The real benefit of the shared memory to the user is that there is no need to consider the layout of data. Data flows naturally to wherever it is needed, and that is really the key advantage to the user of such systems. In fact, for dynamic algorithms, extremely complex load-balancing schemes have to be devised to accomplish what the SPS-2 system does routinely. Clearly, such software belongs in the operating system and not explicitly in every user's programs.