previous chapter
Realizing the Goals of the HPCC Initiative: Changes Needed
next chapter

Realizing the Goals of the HPCC Initiative:
Changes Needed

Charles Brownstein

Charles N. Brownstein is the Acting Assistant Director of NSF and is a member of the Executive Directorate for Computer and Information Science and Engineering (CISE) at NSF. Dr. Brownstein chairs the interagency Federal Networking Council, which oversees federal management of the U.S. Internet for research and education. He participates in the Federal Coordinating Committee on Science, Engineering and Technology, which coordinates federal activities in high-performance computing, research, and educational networking. He has served as a Regent of the National Library of Medicine and recently participated in the National Critical Technologies panel. Before the creation of CISE in 1986, Dr. Brownstein directed the Division of Information Science and Technology. He also directed research programs on information technology and telecommunications policy at NSF from 1975 to 1983. He came to NSF from Lehigh University, Bethlehem, Pennsylvania, where he taught and conducted research on computer and telecommunications policy and information technology applications.

The President's FY 1992 High Performance Computing and Communications Initiative (HPCC Initiative)—also known as the High Performance Computing Initiative (HPCI)—may signal a new era in U.S. science and technology policy. It is the first major technology initiative of the 1990s.


570

It integrates technology research with goals of improving scientific research productivity, expanding educational opportunities, and creating new kinds of national "information infrastructure."

In the post-Cold War and post-Gulf War environment for R&D, we're going to need a precompetitive, growth-producing, high-technology, highly leveraged, educationally intensive, strategic program. The HPCC Initiative will be a prime example. This paper explores the changes that had to occur to get the initiative proposed and the changes which are needed to realize its goals. It is focused on the issue of the human resource base for computing research.

The HPCC program, as proposed, will combine the skills, resources, and missions of key agencies of the government with those of industry and leading research laboratories. The agency roles are spelled out in the report "Grand Challenges: High Performance Computing and Communications," which accompanied the President's budget request to Congress.

On its surface, the HPCC Initiative seeks to create faster scientific computers and a more supple high-performance computer communications network. But the deep goals deal more with creating actual resources for research and national economic competitiveness and security. One essential part is pure investment: education and human resources are an absolutely critical part of both the HPCC Initiative and the future of our national industrial position in computing.

HPCC became a budget proposal for FY 1992 because the new leaders of the President's Office of Science & Technology Policy (OSTP) had the vision to create an innovative federal R&D effort. The President's Science Advisor, Dr. Allan Bromley, came in, signed on, and picked up an activity that had been under consideration for five years. The plan represents the efforts of many, many years of work from people in government, industry, and user communities. Dr. Bromley's action elevated the HPCC program to a matter of national priority. Gene Wong (see his presentation earlier in this session) joined OSTP and helped refine the program, translating between the language of the administration and the language of the scientific community.

Industry participation is a central feature of HPCC. In the period of planning the program, industry acknowledged the fact that there's a national crisis in computing R&D, education, and human resources. Research has traditionally been supported in the U.S. as a partnership among the government, universities, laboratories, and industry. Today, it's possible to get money to do something in education from almost all of the major companies. That's a good sign.


571

Computing as an R&D field has some obvious human-resource deficiencies now and will have some tremendous deficiencies in the labor pool of the future. There are fewer kids entering college today with an intent in majoring in natural sciences and engineering than was the case at any time in the past 25 years. Entry into college with the goal of majoring in natural sciences and engineering is the best predictor of completing an undergraduate degree in the field. Very few people transfer into these fields; a lot of people transfer out. The net flow is out into the business schools and into the humanities.

The composition of the labor pool is changing. The simple fact is that there will be greater proportions of students whose heritages have traditionally not led them into natural sciences and engineering. There are no compelling reasons to suggest that significant numbers of people from that emerging labor pool can't be trained. A cultural shift is needed, and intervention is needed to promote that cultural shift.

The resource base for education is in local and state values and revenues; the ability for the federal government to intervene effectively is really pretty small. Moreover, the K–12 curriculum in natural sciences and engineering, with respect to computational science, is marginal. The problem gets worse the higher up the educational system that you go. Teaching is too often given second-class status in the reward structure at the country's most prestigious universities. So we have a daunting problem, comparable to any of the grand challenges that have been talked about in the HPCC Initiative.

One place to start is with teachers. There's an absolute hunger for using computers in education. Parts of the NSF supercomputer center budgets are devoted to training undergraduate and graduate students, and the response has been encouraging. One recent high school student participant in the summer program at the San Diego Center placed first in the national Westinghouse Science Talent Search.

The Washington bureaucracy understands that dealing with education and human resources is a critical part of the effort. Efforts undertaken by the Federal Coordinating Committee on Science, Engineering, and Technology have produced an HPCC Initiative with a substantial education component and, separately, an Education and Human Resources Initiative capable of working synergistically in areas like networking.

One group that needs to get much more involved is our leading "computing institutions." We have, it seems, many isolated examples of "single-processor" activities in education and human resources. Motives ranging from altruism to public relations drive places like the NSF and


572

NASA Centers, the Department of Energy (DOE) labs, and other computational centers around the country to involve a broad range of people in educational activities. That includes everything from bringing in a few students to running national programs like Superquest. We need to combine these efforts.

A national Superquest program might be created to educate the country about the importance of high-performance computing. Cornell University and IBM picked up the Superquest idea and used it in 1990. They involved students from all over the country. One of the winners was Thomas Jefferson High School, in Virginia; Governor John Sununu, whose son attends school there, spoke at the ceremonies announcing the victory.

We need to run interagency programs that put together a national Superquest program with the assets of DOE, NASA, NSF, and the state centers and use it to pull a lot of kids into the process of scientific computing. They'll never escape once they get in, and they will pull a lot of people such as their parents and teachers into the process.

We also need to find ways to involve local officials. School systems in the country have daunting problems. They have been asked to do a lot of things apart from education. Science education is just a small part of the job they do. They need a lot of help in learning how to use computing assets. I believe that concerned officials are out there and will become involved. If we're going to do anything significant, ever, in the schools at the precollege level, these officials have to be the people who are convinced. The individual teacher is too much at the whim of the tax base and what happens to residential real-estate taxes. The local officials have to be pulled in and channeled into these programs. The people to do that are the local members of the research community from our universities, laboratories, and businesses.

Getting these people to make an investment in the student base and in the public base of understanding for this technology is very important. I would love to see people like Greg McRae of Carnegie Mellon University spend about six months being an evangelist in the sense of reaching out to the educational community and the public at large.

What will the HPCC Initiative do for education in computational science? The initiative has about 20 per cent of its activity in education and human resources, and to the extent that we can get this program actually supported, there is a commitment, at least within the agencies, to maintain that level. The program will support graduate students on research projects, along with training for postdocs in computational


573

science, curriculum improvement, and teacher training. About 20 per cent is for the National Research and Education Network (NREN). This used to be called NRN. The educational opportunity is absolutely critical, and we are serious about keeping it NREN—with an E .

Over the past few years, the Internet has been extended from about 100 institutions—the elite—to over 600 educational institutions. The number we aim for is 3000. That sounds daunting, except that we've driven the price of an incremental connection to the network, through a structure of regional networks, down from the $60,000 range, to about the $10,000 or $11,000 range. That will come down much further, making it easily available to anyone who wants it as commercial providers enter the market.

That means that small, "have-not" institutions in remote or poor areas of the country will be viable places for people to reach out to national assets of research and education, including the biggest computers at the best-equipped institutions in the country. One finds odd people in odd places using odd machines over the network to win Gordon Bell awards. It's really quite amazing what a transforming effect an accessible net can have.

Much has occurred in networking recently. We've gone from 56 kilobytes to 45 megabits in the NSFnet backbone that is shared with the mission agencies. The regional nets will be upgrading rapidly. The mission agency nets are linked via federal internet exchanges, resources are shared, and the mix is becoming transparent.

A commercial internet exchange (CIX) has been created. Network services are also changing. The resources are there for X-400 and X-500. There are programs under way to get national white pages. Many scientific communities have begun to create their own distributed versions, ranging from bulletin boards to software libraries.

Long-time users have experienced a transformation in reliability, compatibility, reach, and speed. We have, in the wings, commercial providers of services, from electronic publishing to educational software, preparing to enter this network. The U.S. research community has been engaged, and usage is growing rapidly in all of the science and engineering disciplines. Like supercomputing, high-performance networking is turning out to be a transforming technology. Achieving the President's HPCC goal is the "grand challenge" that must be met to sustain this kind of progress.


575

previous chapter
Realizing the Goals of the HPCC Initiative: Changes Needed
next chapter