Hardware
From a technology viewpoint, I believe the ETA-10 was an outstanding hardware breakthrough and a first-rate manufacturing effort. We used very dense complementary metal oxide semiconductor (CMOS) circuits, reducing the size of the supercomputer processor to a single 16- by 22-inch board. I'm sure many of you have seen that processor. The CMOS chips reduced the power consumption of the processor to about 400 watts—that's watts, not 400 kilowatts. The use of CMOS chips operating in liquid nitrogen instead of ambient air resulted in doubling the speed of the CMOS. As a result of the two cooling methods and the configuration span from a single air-cooled processor to an eight-processor, liquid-cooled machine, we achieved a 27-to-one performance range. That range was able to use the same software and training for the diagnostics, operating-system software, and manufacturing checkout. We had broad commonality on a product line and inventory from top to bottom. We paid for the design only once, not many times. Other companies have proposed such a strategy—we executed it.
The liquid-nitrogen cryogenic cooling was a critical part of our design. I would suggest liquid nitrogen cooling as a technology other people should seriously consider. For example, a 20-watt computer will boil off one gallon of liquid nitrogen in an eight-hour period. Liquid nitrogen can be bought in bulk at a price cheaper than milk—it is as low as 25 cents a gallon in large quantities. This equals eight hours of operation for $0.40, assuming $0.40 per gallon. We get about 90 cubic feet of -200°C nitrogen gas. This gas can also help cool the rest of your computer room, greatly reducing the cooling requirements.
The criticism that liquid nitrogen resulted in a long mean time to repair was erroneous because at the time of the ETA closure, we could replace a processor in a matter of hours. The combination of CMOS and liquid-nitrogen cooling coupled with the configuration range provided a broad
product family. These were good decisions—not everything we did was wrong.
The ETA-10 manufacturing process was internally developed and represented a significant advance in the state of the art. The perfect processor board yield at the end was 65 per cent for a board that was 16 by 22 inches with 44 layers and a 50-ohm controlled impedance. Another 30 per cent were usable with surface ECO wires. The remaining five per cent were scrap. This automated line produced enough boards to build two computers a day with just a few people involved.
For board assembly, we designed and built a pick-and-place robot to set the CMOS chips onto the processor board, an operation it could perform in less than four hours. The checkout of the computer took a few more hours. We really did have a system designed for volume manufacturing.
Initially, the semiconductor vendor was critical to us because it was the only such vendor in the United States that would even consider our advanced CMOS technology. In retrospect, our technology requirements and schedule were beyond the capabilities of the vendor to develop and deliver. Also, this vendor was not a merchant semiconductor supplier and did not have the infrastructure or outside market to support the effort. We were expected to place enough orders and supply enough funding to keep them interested in our effort. Our mistake was teaming with a nonmerchant vendor needing our resources to stay in the commercial semiconductor business.
We believed that we should work with U.S. semiconductor vendors because of the critical health of the U.S. semiconductor business. I would hasten to point out that the Japanese were very willing to supply us with the technology, both logic and memory that met or exceeded what we needed. Still, we stayed with the U.S. suppliers longer than good judgment warranted because we thought there was value to having a U.S.-made supercomputer with domestic semiconductors. We believed that our government encouraged such thinking, but ETA paid the price. In essence, we were trying to sell a computer with 100 per cent U.S. logic and memory components against a computer with 90 per cent Japanese logic and memory components, but we could not get any orders. I found the government's encouragement to us to use only U.S. semiconductor components and the subsequent action of buying competitive computers with the majority of their semiconductor content produced in Japan inconsistent and confusing.
Very clearly, the use of Japanese components does not affect the salability of the system in the U.S.—that message should be made clear to everyone. This error is not necessarily ETA's alone, but if the U.S.
government wants healthy U.S. semiconductor companies, then it must create mechanisms to encourage products with high U.S. semiconductor content only and to support R&D to keep domestic suppliers up to the state of the art.