Events in Supercomputing since 1983
Now I'd like to talk about representative events that I believe have become significant in supercomputing since 1983. After the 1983 conference, the National Security Agency (NSA) went to the Institute for Defense Analyses (IDA) and said that they would like to establish a division of IDA to do research in parallel processing for NSA. We established the Supercomputing Research Center (SRC), and I think this was an important step.
Meanwhile, NSF established supercomputing centers, which provided increased supercomputer access to researchers across the country. There were other centers established in a number of places. For instance, we have a Parallel Processing Science and Technology Center that was set up by NSF at Rice University with Caltech and Argonne National Laboratory. NSF now has computational science and engineering programs that are extremely important in computational math, engineering, biology, and chemistry, and they really do apply this new paradigm in which we use computational science in a very fundamental way on basic problems in those areas.
Another event since 1983, scientific visualization, has become a really important element in supercomputing.
The start up of Engineering Technology Associates Systems (ETA) was announced at the 1983 banquet speech by Bill Norris. Unfortunately, ETA disbanded as an organization in 1989.
In 1983, Denelcor was a young organization that was pursuing an interesting parallel processing structure. Denelcor went out of business, but their ideas live on at Tera Computer Company, with Burton Smith behind them.
Cray Research, Inc., has trifurcated into three companies since 1983. One of those, Supercomputing Systems, Inc., is receiving significant technological and financial support from IBM, which is a very positive direction.
At this time, the R&D costs for a new supercomputer chasing very fast clock times are $200 or $300 million. I'm told that's about 10 times as much as it was 10 years ago.
Japan is certainly a major producer of supercomputers now, but they haven't run away with the market. We have a federal High Performance Computing Initiative that was published by the Office of Science and Technology Policy in 1989, and it is a result of the excellent interagency cooperation that we have. It is a good plan and has goals that I hope will serve us well.
The Defense Advanced Research Projects Agency's Strategic Computing Program began in 1983. It has continued on and made significant contributions to high-performance computing.
We now have the commercial availability of massively parallel machines. I hope that commercial availability of these machines will soon be a financial success.
I believe the U.S. does have a clear lead in parallel processing, and it's our job to take advantage of that and capitalize on it. There are a significant number of applications that have been parallelized, and as that set of applications grows, we can be very encouraged.
We now have compilers that produce parallel code for a number of different machines and from a number of different languages. The researchers tell me that we have a lot more to do, but there is good progress here. In the research community there are some new, exciting ideas in parallel processing and computational models that should be very important to us.
We do have a much better understanding now of interconnection nets and scaling. If you remember back seven years, the problem of interconnecting all these processors was of great concern to all of us.
There has been a dramatic improvement in microprocessor performance, I think primarily because of RISC architectures and microelectronics for very-large-scale integration. We have high-performance workstations now that are as powerful as CRAY-1s. We have special accelerator boards that perform in these workstations for special functions at very high rates. We have minisupercomputers that are both vector and scalable parallel machines. And UNIX is certainly becoming a standard for high-performance computing.
We are still "living on silicon." As a result, the supercomputers that we are going to see next are going to be very hot. Some of them may be requiring a megawatt of electrical input, which will be a problem.
I think there is a little flickering interest again in superconducting electronics, which provides a promise of much smaller delay-power products, which in turn would help a lot with the heat problem and give us faster switching speeds.