previous chapter
Supercomputing As a National Critical Technologies Effort
next chapter

Supercomputing As a National Critical Technologies Effort

Senator Jeff Bingaman

Senator Jeff Bingaman (D-NM) began his law career as Assistant New Mexico Attorney General in 1969. In 1978 he was elected Attorney General of New Mexico. Jeff was first elected to the United States Senate in 1982 and reelected in 1988. In his two terms, Jeff has focused on restoring America's economic strength, preparing America's youth for the 21st century, and protecting our land, air, and water for future generations.

Jeff was raised in Silver City, New Mexico, and attended Harvard University, graduating in 1965 with a bachelor's degree in government. He then entered Harvard University Law School, graduating in 1968. Jeff served in the Army Reserves from 1968 to 1974.

It is a pleasure to be here and to welcome everyone to Los Alamos and to New Mexico.

I was very fortunate to be here seven years ago, when I helped to open the first Frontiers of Supercomputing conference on a Monday morning in August, right here in this room. I did look back at the remarks I made then, and I'd like to cite some of the progress that has been made since then and also indicate some of the areas where I think we perhaps are still in the same ruts we were in before. Then I'll try to put it all in a little broader context of how we go about defining a rational technology policy for the entire nation in this post-Cold War environment.


8

Back in 1983, I notice that my comments then drew particular attention to the fact that Congress was largely apathetic and inattentive to the challenge that we faced in next-generation computing. The particular fact or occurrence that prompted that observation in 1983 was that the Defense Advanced Research Projects Agency's (DARPA's) Strategic Computing Initiative, which was then in its first year, had been regarded by some in Congress as a "bill payer"—as one of those programs that you can cut to pay for supposedly higher-priority strategic weapons programs. We had a fight that year while I worked with some people in the House to try to maintain the $50 million request that the Administration had made for funding the Strategic Computing Program for DARPA.

Today, I do think that complacency is behind us. Over the past seven years, those of you involved in supercomputing/high-performance supercomputing have persuasively made the case both with the Executive Branch and with the Congress that next-generation computers are critical to the nation's security and to our economic competitiveness. More importantly, you have pragmatically defined appropriate roles for government, industry, and academia to play in fostering development of the key technologies needed for the future and—under the leadership of the White House Science Office, more particularly, of the Federal Coordinating Committee on Science, Engineering, and Technology (FCCSET)—development of an implementation plan for the High Performance Computing Initiative.

That initiative has been warmly received in Congress. Despite the fact that we have cuts in the defense budget this year and will probably have cuts in the next several years, both the Senate Armed Services Committee and the House Armed Services Committee have authorized substantial increases in DARPA's Strategic Computing Program. In the subcommittee that I chair, we increased funding $30 million above the Administration's request, for a total of $138 million this next year. According to some press reports I've seen, the House is expected to do even better.

Similarly, both the Senate Commerce Committee and the Senate Energy Committee have reported legislation that provides substantial five-year authorizations for NSF at $650 million, for NASA at $338 million, and for the Department of Energy (DOE) at $675 million, all in support of a national high-performance computing program. Of course, the National Security Agency and other federal agencies are also expected to make major contributions in the years ahead.


9

Senator Al Gore deserves the credit for spearheading this effort, and much of what each of the three committees that I've mentioned have done follows the basic blueprint laid down in S. B. 1067, which was a bill introduced this last year that I cosponsored and strongly supported. Mike Nelson, of Senator Gore's Commerce Committee staff, will be spending the week with you and can give you better information than I can on the prospects in the appropriations process for these various authorizations.

One of the things that has struck me about the progress in the last seven years is that you have made the existing institutional framework actually function. When I spoke in 1983, I cited Stanford University Professor Edward Feigenbaum's concern (expressed in his book The Fifth Generation ) that the existing U.S. institutions might not be up to the challenge from Japan and his recommendation that we needed a broader or bolder institutional fix to end the "disarrayed and diffuse indecision" he saw in this country and the government. I think that through extraordinary effort, this community, that is, those of you involved in high-performance supercomputing, have demonstrated that existing institutions can adapt and function. You managed to make FCCSET work at a time when it was otherwise moribund. You've been blessed with strong leadership in some key agencies. I'd like to pay particular tribute to Craig Fields at DARPA and Erich Bloch at NSF. Erich is in his last month of a six-year term as the head of NSF, and I believe he has done an extraordinary job in building bridges between the academic world, industry, and international laboratories. His efforts to establish academic supercomputer centers and to build up a worldwide high-data-rate communications network are critical elements in the progress that has been made over the last seven years. Of course, those efforts were not made and those successes were not accomplished without a lot of controversy and complaints from those who felt their own fiefdoms were challenged.

On the industrial side, the computer industry has been extraordinarily innovative in establishing cooperative institutions. In 1983, both the Semiconductor Research Cooperative (SRC) and Microelectronics and Computer Technology Corporation (MCC) were young and yet unproved. Today SRC and MCC have solid track records of achievement, and MCC has had the good sense to attract Dr. Fields to Austin after his dismissal as head of DARPA, apparently for not pursuing the appropriate ideological line.


10

More recently, industry has put together a Computer Systems Policy Project, which involves the CEOs of our leading computer firms, to think through the key generic issues that face the industry. Last month, the R&D directors of that group published a critical technologies report outlining the key success factors that they saw to be determinative of U.S. competitiveness in the 16 critical technologies for that industry.

As I see it, all of these efforts have been very constructive and instructive for the rest of us and show us what needs to be done on a broader basis in other key technologies.

The final area of progress I will cite is the area I am least able to judge, namely, the technology itself. My sense is that we have by and large held our own as a nation vis-à-vis the rest of the world in competition over the past seven years. I base this judgment on the Critical Technology Plan—which was developed by the Department of Defense (DoD), in consultation with DOE—and the Department of Commerce's Emerging Technologies Report, both of which were submitted to Congress this spring. According to DoD, we are ahead of both Japan and Europe in parallel computer previous hit architectures next hit and software producibility. According to the Department of Commerce report, we are ahead of both Japan and Europe in high-performance computing and artificial intelligence. In terms of trends, the Department of Commerce report indicates that our lead in these areas is accelerating relative to Europe but that we're losing our lead in high-performance computing over Japan and barely holding our lead in artificial intelligence relative to Japan.

Back in 1983, I doubt that many who were present would have said that we'd be as well off as we apparently are in 1990. There was a great sense of pessimism about the trends, particularly relative to Japan. The Japanese Ministry of International Trade and Industry (MITI) had launched its Fifth Generation Computer Project by building on their earlier national Superspeed Computer Project, which had successfully brought Fujitsu and Nippon Electric Corporation to the point where they were challenging Cray Research, Inc., in conventional supercomputer hardware. Ed Feigenbaum's book and many other commentaries at the time raised the specter that this technology was soon to follow consumer electronics and semiconductors as an area of Japanese dominance.

In the intervening years, those of you here and those involved in this effort have done much to meet that challenge. I'm sure all of us realize that the challenge continues, and the effort to meet it must continue. While MITI's Fifth Generation Project has not achieved its lofty goals, it has helped to build an infrastructure second only to our own in this critical field. Japanese industry will continue to challenge the U.S. for first


11

place. Each time I've visited Japan in the last couple of years, I've made it a point to go to IBM Japan to be briefed on the progress of Japanese industry, and they have consistently reported solid progress being made there, both in hardware and software.

I do think we have more of a sense of realism today than we had seven years ago. Although there is no room for complacency in our nation about the efforts that are made in this field, I think we need to put aside the notion that the Japanese are 10 feet tall when it comes to developing technology. Competition in this field has helped both our countries. In multiprocessor supercomputers and artificial intelligence, we've spawned a host of new companies over the past seven years in this country. Computers capable to 1012 floating-point operations per second are now on the horizon. New products have been developed in the areas of machine vision, automatic natural-language understanding, speech recognition, and expert systems. Indeed, expert systems are now widely used in the commercial sector, and numerous new applications have been developed for supercomputers.

Although we are not going to be on top in all respects of supercomputing, I hope we can make a commitment to remain first overall and to not cede the game in any particular sector, even those where we may fall behind.

I have spent the time so far indicating progress that has been made since the first conference. Let me turn now to just a few of the problems I cited in 1983 and indicate some of those that still need to be dealt with.

The most fundamental problem is that you in the supercomputing field are largely an exception to our technology policy-making nationwide. You have managed through extraordinary effort to avoid the shoals of endless ideological industrial-policy debate in Washington. Unfortunately, many other technologies have not managed to avoid those shoals.

Let me say up front that I personally don't have a lot of patience for these debates. It seems to me our government is inextricably linked with industry through a variety of policy mechanisms—not only our R&D policy but also our tax policy, trade policy, anti-trust policy, regulatory policy, environmental policy, energy policy, and many more. The sum total of these policies defines government's relationship with each industry, and the total does add up to an industrial policy. This is not a policy for picking winners and losers among particular firms, although obviously we have gone to that extent in some specific cases, like the bailouts of Lockheed and Chrysler and perhaps in the current debacle in the savings and loan industry.


12

In the case of R&D policy, it is clearly the job of research managers in government and industry to pick winning technologies to invest in. Every governor in the nation, of both political parties, is trying to foster winning technologies in his or her state. Every other industrialized nation is doing the same. I don't think anybody gets paid or promoted for picking losing technologies.

Frankly, the technologies really do appear to pick themselves. Everyone's lists of critical technologies worldwide overlap to a tremendous degree. The question for government policy is how to insure that some U.S. firms are among the world's winners in the races to develop supercomputers, advanced materials, and biotechnology applications—to cite just three examples that show up on everybody's list.

In my view, the appropriate role for government in its technology policy is to provide a basic infrastructure in which innovation can take place and to foster basic and applied research in critical areas that involve academia, federal laboratories, and industry so that risks are reduced to a point where individual private-sector firms will assume the remaining risk and bring products to market. Credit is due to Allan D. Bromley, Assistant to the President for Science and Technology, for having managed to get the ideologues in the Bush Administration to accept a government role in critical, generic, and enabling technologies at a precompetitive stage in their development. He has managed to get the High Performance Computing Initiative, the Semiconductor Manufacturing Technology Consortium, and many other worthwhile technology projects covered by this definition.

Frankly, I have adopted Dr. Bromley's vocabulary—"critical, generic, enabling technologies at a precompetitive stage"—in the hope of putting this ideological debate behind us. In Washington we work studiously to avoid the use of the term "industrial policy," which I notice we used very freely in 1983. My hope is that if we pragmatically go about our business, we can get a broad-based consensus on the appropriate roles for government, industry, and academia in each of the technologies critical to our nation's future. You have, as a community, done that for high-performance supercomputing, and your choices have apparently passed the various litmus tests of a vast majority of members of both parties, although there are some in the Heritage Foundation and other institutions who still raise objections.

Now we need to broaden this effort. We need to define pragmatically a coherent, overall technology policy and tailor strategies for each critical technology. We need to pursue this goal with pragmatism and flexibility, and I believe we can make great headway in the next few years in doing so.


13

Over the past several years, I have been attempting to foster this larger, coherent national technology policy in several ways. Initially, we placed emphasis on raising the visibility of technology issues within both the Executive Branch and the Congress. The Defense Critical Technology Plan and the Emerging Technologies Report have been essential parts of raising the visibility of technological issues. Within industry I have tried to encourage efforts to come up with road maps for critical technologies, such as those of the Aerospace Industries Association, John Young's Council on Competitiveness, and the Computer Systems Policy Project. It is essential that discussion among government, industry, and academia be fostered and that the planning processes be interconnected at all levels, not just at the top.

At the top of the national critical technologies planning effort, I see the White House Science Office. Last year's Defense Authorization Bill established a National Critical Technologies Panel under Dr. Bromley, with representation from industry, the private sector, and government. They recently held their first meeting, and late this year they will produce the first of six biennial reports scheduled to be released between now and the year 2000. In this year's defense bill, we are proposing to establish a small, federally funded R&D center under the Office of Science and Technology Policy, which would be called the Critical Technologies Institute. The institute will help Dr. Bromley oversee the development of interagency implementation plans under FCCSET for each of the critical technologies identified in the national critical technologies reports (much like the plan on high-performance computing issued last year). Dr. Ed David, when he was White House Science Advisor under President Nixon, suggested to me that the approach adopted by the Federally Funded Research and Development Centers was the only way to insure stability and continuity in White House oversight of technology policy. After looking at various alternatives, I came to agree with him.

Of course, no structure is a substitute for leadership. I believe that the policy-making and reporting structure that we've put in place will make the job of government and industry leaders easier. It will ensure greater visibility for the issues, greater accountability in establishing and pursuing technology policies, greater opportunity to connect technology policy with the other government policies that affect the success or failure of U.S. industry, and greater coherence among research efforts in government, industry, and academia. That is the goal that we are pursuing.

I think we will find as we follow this path that no single strategy will be appropriate to each technology or to each industry. What worked for high-performance supercomputing will not transfer readily to advanced


14

materials or to biotechnology. We will need to define appropriate roles in each instance in light of the existing government and industry structure in that technology. In each instance, flexibility and pragmatism will need to be the watchwords for our efforts.

My hope is that if another conference like this occurs seven years from now, we will be able to report that there is a coherent technology policy in place and that you in this room are no longer unique as having a White House-blessed implementation plan.

You may not feel you are in such a privileged position at this moment compared to other technologies, and you know better than I the problems that lie ahead in ensuring continued American leadership in strategic computing. I hope this conference will identify the barriers that remain in the way of progress in this field. I fully recognize that many of those barriers lie outside the area of technology policy. A coherent technology strategy on high-performance computing is necessary but clearly not sufficient for us to remain competitive in this area.

I conclude by saying I believe that you, and all others involved in high-performance supercomputing, have come a great distance in the last seven years and have much to be proud of. I hope that as a result of this conference you will set a sound course for the next seven years.

Thank you for the opportunity to meet with you, and I wish you a very productive week.


15

previous chapter
Supercomputing As a National Critical Technologies Effort
next chapter