previous sub-section
A Look at Worldwide High-Performance Computing and Its Economic Implications for the U.S.*
next sub-section

The Soviet Union

The Soviets have a long history of high-performance computing. The USSR began research into computing shortly after World War II and produced functional digital computers in the early 1950s. The first efforts in parallel processing began in the early 1960s, and research in this area has continued steadily since then.

Soviet scientists have explored a wide spectrum of approaches in developing high-performance systems but with little depth in any one. Consequently, the Soviets have yet to make a discernible impact on the global corpus of supercomputing research. The Soviets to date have


417

neither put into serial production a computer of CRAY-1 performance or greater—only within the last few years have they prototyped a machine at that level—nor have they yet entered the worldwide supercomputer market. However, Soviet high-performance computing efforts conducted within the Academy of Sciences have exhibited higher levels of innovation than have their efforts to develop mainframes, minicomputers, and microcomputers.[*]

The BESM-6, a machine that is capable of a million instructions per second (MIPS) and was in serial production from 1965 to 1984, has been, until recently, the workhorse of the Soviet scientific community. The concept of a recursive-previous hit architecture next hit machine with a recursive internal language, recursive memory structure, recursive interconnects, etc., was reported by Glushkov et al. (1974). The ES-2704, which only recently entered limited production, is a machine embodying these architectural and data-flow features. Computation is represented as a computational node in a graph. The graph expands as nodes are decomposed and contracts as results are combined into final results.

The ES-2701, developed at the Institute of Cybernetics in Kiev, like the ES-2704, incorporates distributed-memory flexible interconnects but is based on a different computational paradigm—there called a macropipeline computation—in which pipelining occurs at the algorithm level. Computation, under some problems, progresses as a wave across the processor field as data and intermediate results are passed from one processor to the next.

The ES-2703 is promoted as a programmable-previous hit architecture next hit machine. The previous hit architecture next hit is based on a set of so-called macroprocessors connected by a crossbar switch that may be tuned by the programmer. The "macro" designation denotes microcode or hardware implementation of complex mathematical instructions.

The El'brus project is the most heavily funded in the Soviet Union. The El'brus-1 and -2 were strongly influenced by the Burroughs 700-series previous hit architecture next hit, with its large-grain parallelism, multiple processors sharing banks of common memory, and stack-based previous hit architecture next hit for the individual processors. A distinguishing feature of this first El'brus machine stemmed from the designers' decision to use, in lieu of an assembly language, an Algol-like, high-level procedural language with underlying hardware support. This compelled the El'brus design team to


418

maintain software compatibility across the El'brus family at the level of a high-level language, which in turn enabled them to use very different previous hit architectures next hit for some of their later models (e.g., the El'brus-3 and mini-El'brus, both very-long-instruction-word machines).

Most of the more successful machines, from the point of view of production, have been developed through close cooperation between the Academy of Sciences and industry organizations. One such machine, the PS-2000, was built by an organization in the eastern Ukraine—the Impul's Scientific Production Association. The PS-2000 could have up to 64 processors operating in a SIMD fashion, and its successor, the PS-2100, combines 10 groupings of the 64 processors, with the whole complex then being able to operate in a MIMD fashion. Although now out of production, 200 PS-2000s were produced in various configurations and now are actively used primarily in seismic and other energy-related applications. Series production of the PS-2100 began in 1990.

The development of high-performance computing in the Soviet Union is hindered by a number of problems. For one, the supply of components, both from indigenous suppliers and from the West, is inconsistent. Moreover, the state of mass storage is very weak. The 317-megabyte disks, which not long ago represented the Soviet state of the art, continue to be quite rare. Further, perestroika -related changes have caused sharp reductions in funding of several novel previous hit architecture next hit projects, and a number have been terminated.


previous sub-section
A Look at Worldwide High-Performance Computing and Its Economic Implications for the U.S.*
next sub-section