Applications
Table 3 summarizes many of the supercomputer applications currently running at GM.
Most of the supercomputer applications represent finite element or finite difference two- or three-dimensional mathematical models of physical phenomena. Both early and current applications at GM have been dominated by work in the aerodynamics area (computational fluid dynamics), combustion modeling, and structural analysis (including crashworthiness analysis); see, for example, Hammond (1985), Meintjes
|
(1986), Grubbs (1985), Haworth and El Tahry (1990), Haworth et al. (1990), El Tahry and Haworth (1991), Ginsberg (1988, 1989), Ginsberg and Johnson (1989), Ginsberg and Katnik (1990), Johnson and Skynar (1989), Khalil and Vander Lugt (1989), and Shkolnikov et al. (1989). This work involves both software developed in-house (primarily by GMR personnel) and use of commercial packages (used primarily by personnel in GM Divisions and Staffs). Within the past several years, additional applications have utilized the GMR supercomputer; see, for example, sheet-metal-forming applications as discussed by Chen (May 1991, July 1991), Chen and Waugh (1990), and Stoughton and Arlinghaus (1990). A most recent application by the newly formed Saturn Corporation is using the GMR Cray and simulation software to design strategically placed "crush zones" to help dissipate the energy of a crash before it reaches vehicle occupants (General Motors Corporation 1991).
In addition to the use of the Cray supercomputer, GMR scientists and engineers have been experimenting with other high-performance computers, such as hypercube and transputer-based architectures. Such machines provide a low-cost, distributed parallel computing facility. Recent work in this area on such machines includes that described by Baum and McMillan (1988, 1989), Malone (1988, 1989, 1990), Malone and Johnson (1991a, 1991b), and Morgan and Watson (1986, 1987). A more complete list of GM applications of high-performance computers is given by Ginsberg (1991).