Technology Transfer and Collaboration
Pending before Congress are several bills concerning tremendous potential advances in the infrastructure that supports high-performance computing. We at this meeting have a great deal of interest in cooperative efforts to further the cause of high-performance computing—to insure the technological competitiveness of our companies, our research institutions, and, indeed, our nation. To achieve these goals we must learn to work together to share fruitfully technological advances. The definition of infrastructure is perhaps a good starting point for discussing technology transfer challenges. The electronic thesaurus offers the following substitutes for infrastructure:
• chassis, framework, skeleton;
• complex, maze, network, organization, system;
• base, seat; and
• cadre, center, core, nucleus.
The legislation pending has all these characteristics. In terms of a national network that connects high-performance computing systems and large data repositories of research importance, the challenge goes well beyond simply providing connections and hardware. We want a national network that is not a maze but an organized, systematized framework to advance technology. Research support is only part of the goal, for research must be transferred to the bottom line in a sense similar to that discussed in previous sections. No single part of the infrastructure can be singled out, nor left out, for the result to be truly effective. We have spoken often in this forum of cooperative efforts among government, academia, and industry. I would like to be more explicit. If we take the three sectors one level of differentiation further, we have Figure 1.
Just as supercomputers must embrace the enterprise-wide computing establishment within large companies, the national initiatives in high-performance computing must embrace the end-user sector of industry, as well. The payoff is a more productive economy. We need a national network, just like we needed a national highway system, an analogy often used by Senator Albert Gore. Carrying this further, if we had restricted the highway system to any particular sector, we would not have seen the birth of the trucking industry, the hotel and tourism industries, and so on. Much is to be gained by cooperative efforts, and many benefits cannot be predicted in advance. Let us examine two
|
Figure 1.
Technological sectors.
examples of technology transfer that came about through an investment in infrastructure, one by government and another by industry.
First is an example provided by Dr. Riaz Abdulla, from Eli Lilly Research Laboratories, in a private communication. He writes:
For your information, supercomputing, and particularly network supercomputing at Eli Lilly became successful owing to a mutually supportive research and management position on the matter. Both the grass-roots movement here, as well as enlightened management committed to providing the best possible tools to the research staff made the enhancement of our research computer network among the best. . . . We are well on the way to establishing a network of distributed processors directly linked to the supercomputing system via high-speed links modeled after the National Center for Supercomputing Applications [at the University of Illinois, one of the NSF-funded supercomputer centers] and the vision of Professor Larry Smarr. Without the model of the NCSA, its staff of scientists, consultants, engineers and software and visualization experts, Lilly's present success in supercomputing would have been impossible.
Clearly, the government investment in supercomputing for the academic world paid off for Eli Lilly. While this was not an original goal of the NSF initiatives, it clearly has become part of the national infrastructure that NSF has become a part of in supercomputing.
In the second example, technology is transferred from the private sector to the academic and government sectors. Boeing Computer Services
has been involved in supercomputing for almost two decades, from before the term was coined. We purchased Serial No. 2 of Control Data Corporation's CDC 6600, for example—a supercomputer in its day. As such, we owned and operated a national supercomputer time sales service when the NSF Advanced Scientific Computing Program was launched. We responded to a request for proposals to provide initial supercomputer time in Phase I of this program. Under contract with NSF we were able to give immediate access to supercomputing cycles. We formed a team to train over 150 research users in access to our system. This was done on location at 87 universities across the country. We provided three in-depth Supercomputing Institutes, the model of which was emulated by the centers themselves after they were established. In subsequent years we helped form, and are a member of, the Northwest Academic Computing Consortium (NWACC), along with 11 northwest universities. In collaboration we have secured NSF funding to create NWNet, the northwest regional NSF network. Boeing designed and initially operated this network but has since turned the operation over to NWACC and the University of Washington in Seattle. In other business activities, Boeing designed, installed, operates, and trains users of supercomputer centers in academia (the University of Alabama system) and government laboratories (NASA and the Department of Energy). Indeed, technology transfer is often a two-way street. The private sector is taking some very aggressive steps to advanced technology in our research laboratories, as well. (For example, see the paper following in this session, by Pat Savage, Shell Development Company, discussing Shell's leadership to the community in parallel computing tools and storage systems.)