Preferred Citation: Warner, Richard E., and Kathleen M. Hendrix, editors California Riparian Systems: Ecology, Conservation, and Productive Management. Berkeley:  University of California Press,  c1984 1984. http://ark.cdlib.org/ark:/13030/ft1c6003wp/


 
Developing a Long-Term Protection Plan for the McCloud River, California1

History of the System

The Wintu Indians were the original inhabitants of the lower McCloud drainage, relying in part on the anadromous fishery for sustenance. While adjacent drainages were being altered by transportation routes and the search for gold in the late 1800s, the McCloud remained intact.

Central Pacific Railroad acquired the first ownership in the drainage, consisting of a river corridor and surrounding checkerboard ownership of sections. However, construction of a railway along the river never came to pass. By this time the fame of the McCloud River's wild trout fishery had spread to San Francisco, and the river corridor property was quickly bought up by pri-

[3] Data on file at the USDI Geologic Survey, Redding, Calif.

[4] Haskins, D.M. 1981. Slope stability hazards and water quality effects: proposed Ah-Di-Na timber sale. Unpublished report. Shasta-Trinity National Forest, Redding, Calif.

[5] Patterson, C. 1975. Vegetation survey: McCloud River Preserve. Unpublished report. The Nature Conservancy, San Francisco, Calif.

[6] Hayes, M. 1975. Report on the avifuana and herpetofauna: McCloud River Preserve. Unpublished report. The Nature Conservancy, San Francisco, Calif.

[7] Hayes, M., and P. Kraai. 1975. Report on the mammals of the McCloud River Preserve. Unpublished report. The Nature Conservancy, San Francisco, Calif.


787

vate individuals and fly-fishing clubs. Land ownership is shown in figure 1. An egg-taking station was installed a few miles up from the confluence with the Pit River, and the McCloud River rainbow trout was introduced to streams around the world.

The first major change to the McCloud drainage came in the form of Shasta Dam, completed in 1945, which blocked anadromous fish migration and inundated about 24.1 km. (15 mi.) of the lower river. Upstream, the impact was more ecological than visual; the pristine qualities of the McCloud River drainage remained unaltered until its downfall in the early 1960s. At that time Pacific Gas and Electric Company built a reservoir to divert most of the McCloud's flow to the Pit River drainage for hydroelectric production. An extensive system of roads was constructed, and much of the land around the reservoir was logged. The FS subsequently acquired about 8.0 km. (5 mi.) of riverfront property below the reservoir and installed a campground. The new road system and public ownership along the river brought a drastic increase in angling pressure to which DFG responded by stocking the river with hatchery trout. The Dolly Varden char population rapidly declined until it was thought to be extinct in the McCloud River.

Impacts on the riparian zone of the river were substantial. Aside from inundating 8.0 km. (5 mi.) more of river, McCloud Reservoir drastically reduced the annual flow downstream. Most Douglas fir (Pseudotsugamenziesii ) and western red cedar (Thujaplicata ) trees growing within the riparian zone died, supposedly due to a root rot epidemic.[8] Alders and willows colonized the banks and gravelbars previously scoured by annual floods. The exotic black locust (Robiniapseudoacacia ), first introduced at a homesite upstream, likewise responded to this available habitat and spread downstream. The streamside plant Peltiphyllumpeltatum began blooming in April instead of June. Beavers began to lodge along the river where they had probably probably been excluded by regular floods in the past.

To complicate this situation, extensive logging and associated road-building increased sediment input. Fortunately, the soils in the McCloud drainage are fairly resistant to mass failure, and the problems found on the Trinity River and Redwood Creek have not yet developed there. However, due to a relatively low channel gradient and reduced flows, the river may not be able to flush out the sediment. This in time could lead to streambed aggradation with associated bank erosion (Seidelman 1980). Fine sediments cloud the river during large rainstorms; this may affect spawning gravels and aquatic invertebrates.

This was the state of affairs when TNC acquired the Preserve in 1973. The McCloud River Club, one of the large private owners, donated 943 ha. (2,330 ac.) of their land, including 10.5 km. (6.5 mi.) of river. The gift was gladly accepted by TNC, which was well aware of the recent and rapid decline in riverine systems throughout the state.


Developing a Long-Term Protection Plan for the McCloud River, California1
 

Preferred Citation: Warner, Richard E., and Kathleen M. Hendrix, editors California Riparian Systems: Ecology, Conservation, and Productive Management. Berkeley:  University of California Press,  c1984 1984. http://ark.cdlib.org/ark:/13030/ft1c6003wp/