Preferred Citation: Ames, Karyn R., and Alan Brenner, editors Frontiers of Supercomputing II: A National Reassessment. Berkeley:  University of California Press,  c1994 1994. http://ark.cdlib.org/ark:/13030/ft0f59n73z/


 
Parallel Algorithms and Implementation Strategies on Massively Parallel Supercomputers*

Some Developments in Parallel Algorithms

In the area of parallel algorithms and methods, there have been several interesting developments in the last seven years. Some of the earliest excitement, particularly in the area of SIMD computing, was the emergence of cellular automata methods. In addition, some very interesting work has been done on adaptive-precision numerical methods, for which the CM-2 provides unique hardware and software support. In addition, there has been much theoretical and experimental research on various asynchronous methods, including proofs of convergence for some of the most interesting ones.


229

A more recent development, the work of Fredericksen and McBryan (1988) on the parallel superconvergent multigrid method, prompted a surge in research activity in parallel multigrid methods. For example, parallel implementations of classic multigrid have been demonstrated with parallel efficiencies of 85 per cent for two-dimensional problems on 1000 processors and about 70 per cent for three-dimensional problems on 1000 processors (Womble and Young 1990)—well in excess of our expectations for these methods, given their partially serial nature.

A new class of methods that emerged is parallel time stepping. C. William Gear (now with the Nippon Electric Corporation Research Institute, Princeton, New Jersey), in a presentation at the July 1989 SIAM meeting in San Diego, California, speculated on the possibility of developing such methods. Womble (1990) discusses a class of methods that typically extract a factor of 4- to 16-fold increase in parallelism over and above the spatial parallelism in a computation. This is not the dramatic increase in parallelism that Gear speculated might be achievable, but it's certainly a step in the right direction in that the time parallelism is multiplicative with spatial parallelism and therefore attractive for problems with limited spatial parallelism.

At the computer-science end of the algorithm spectrum, there have been notable developments in areas such as parallel load balance, mapping methods, parallel graphics and I/O, and so on. Rather than considering each of these areas in detail, the focus will now shift to the impact of parallel algorithms and programming strategies on applications.


Parallel Algorithms and Implementation Strategies on Massively Parallel Supercomputers*
 

Preferred Citation: Ames, Karyn R., and Alan Brenner, editors Frontiers of Supercomputing II: A National Reassessment. Berkeley:  University of California Press,  c1994 1994. http://ark.cdlib.org/ark:/13030/ft0f59n73z/