Preferred Citation: Heilbron, J. L., and Robert W. Seidel Lawrence and His Laboratory: A History of the Lawrence Berkeley Laboratory, Volume I. Berkeley:  University of California Press,  c1989-. http://ark.cdlib.org/ark:/13030/ft5s200764/


 
V— Cast of Characters

In Partibus

We count that the Laboratory had some fifty-four regular members from 1932/33 through 1939/40, "regular" meaning, for our purposes, persons working to prepare for a career in science.

[142] Seaborg, Jl., 1 , 19 (12 Oct 1934); Libby, Peterson, and Latimer, PR, 48 (15 Sep 1935), 571–2, thanking Kurie and White for "advice and assistance," infra, §8.3. Seaborg used a d-d source, about which he had advice from Lawrence, for his graduate work; Jl., 1 , 101, 166 (12 Nov 1935, 15 Oct 1936).

[143] Serber in Brown and Hoddeson, Birth , 211–2; Lamb, ibid., 315, and in Chodorow et al., Bloch , 134–5; Oppenheimer to E.A. Uehling, 12 May [1934], in Smith and Weiner, Oppenheimer , 179; Varney, PT, 35:10 (1982), 28; infra, §9.1, for Alvarez and Bloch, and §10.2 for rhumbatron and klystron.


261

Established people, who came on sabbatical or fellowship leave, volunteers without career ambitions, and undergraduates who left without obtaining a degree, do not count as regulars. The fifty-four distribute into two groups in two different ways: (A) graduate students who obtained a Berkeley Ph.D., not necessarily by 1940; (B) people who came as fresh postdocs; (I) members of either group who left the Laboratory before the war; (II) members of either group who returned to, or remained in, the Laboratory for war work. The numbers involved appear in table 5.5. Half the Ph.D.'s and three-fifths of the postdocs, some twenty-nine people in all, made up the Laboratory's export of manpower during the 1930s. Of these, two out of three went to build or perfect cyclotrons elsewhere: they are our "cyclotroneers in partibus." They and their destinations are listed in table 5.6.

The first of the agents or disciples in partibus was Livingston, who styled himself a missionary and was expected to effect a miracle. In 1934 the Cornell physics department had just fallen under

 

Table 5.5
Distribution of Berkeley regulars, 1932/40

 

I

II

Total

A

16

15

31

B

13

10

23

Total

29

25

54

Note: A, Berkeley's Ph.D.'s; B, postdocs from other institutions; I, regulars who left before World War II; II, regulars who did war work at the Laboratory.


262
 

Table 5.6
Cylotroneers in Partibus, 1932/9

 

Date left

Destination(s)

Class

Abelson, P.H.

1939

Carnegie Inst.

A

Green, G.K.

1938

Carnegie Inst.

B

Henderson, M.C.

1935

Princeton

B

Hurst, D.G.

1937

Cambridge

B

Kinsey, B.B.

1936

Liverpool

B

Kurie, F.N.D.

1938

Indiana

B

Langsdorf, A.

1939

Washington U.

B

Laslett, L.J.

1937

Copenhagen; Indiana

A

Livingood, J.J.

1938

Harvard

B

Livingston, M.S.

1934

Cornell

A

Lyman, E.M.

1938

Illinois

A

Paxton, H.C.

1937

Paris; Columbia

A

Richardson, J.G.

1937

Michigan; Illinois

A

Simmons, S.J.

1939

Pittsburgh

A

Snell, A.M.

1938

Chicago

B

Thornton, R.L.

1936

Michigan; Wash'n U.

B

Van Voorhis, S.N.

1938

Rochester

B

Walke, H.

1937

Liverpool

B

White, M.G.

1935

Princeton

A

the control of R.C. Gibbs, an ambitious and prescient man, who decided to plant nuclear physics in Ithaca in the hope that a flourishing research tradition would grow in its shade. He brought in Livingston and, the following year, Bethe, as assistant professors to cooperate in establishing a theoretical and experimental program in nuclear physics. They did so successfully; but it proved impossible to continue development of even a sixth-scale version of the Berkeley Laboratory. The fundamental obstacle, which all cyclotroneers encountered in one degree or another, was lack of staff. Crew service had no appeal high above Cayuga's waters. Furthermore, although Cornell warmed to the cyclotron gospel, Gibbs had other interests to further as well and his even-handed


263

division of departmental assets hampered the expansion of capital-intensive units.[144] Therefore, although Livingston built a small and effective cyclotron in good time (it gave 3 or 4 µA of 2 MeV protons within a year), and although he and Bethe worked productively together, he felt stifled as a cyclotroneer. As far as cyclotrons are concerned, as Lawrence was to say, "the larger the better." In 1938 Livingston went to MIT as associate professor of physics to build a cyclotron larger than Berkeley's 37-inch.[145]

The problem of understaffing was met in part by collecting more than one man with Berkeley experience at one place. That occurred with the second cyclotron built outside the Laboratory, at Princeton, by Milton White and Malcolm Henderson; it, too, took about a year to make, but, unlike Livingston's machine at Cornell, it was larger (36-inch poles) than its original when it came to life in 1936.[146] Other examples of double teaming:[147] the machines built or started by Berkeley pairs, as at Illinois (the second cyclotron there), Indiana, and Saint Louis; machines begun by visitors to the Laboratory and finished by regulars, as at Chicago, Harvard, Michigan, and Rochester; machines started by foolhardy types without Berkeley experience and finished with the help of one or more men from the Laboratory, as at Cambridge, Columbia, Copenhagen, Liverpool, and Paris. The mutual dependence of these young men entrusted with large and costly projects comes out eloquently in a late night letter from Thornton, then at Michigan, to Cooksey. "There are so many things under way my nerves get on edge and I am pursued by doubts. Reg [J.R. Richardson] is a great help in really discouraged moments—someone to chew with, with a proper flippant attitude towards cyclotrons."[148]

[144] Livingston to Lawrence, 7 Jan 1938 (12/12); similar laments occur in Hickman (Harvard) to J.S. Foster, 15 Jan 1938 (UAV, 691.60/3), and von Friesen (Stockholm) to Cooksey, 15 Dec 1938 (17/47).

[145] Bethe, "History," 1–2 (HAB); Livingston, Particle acc. , 37, and RSI , 7 (1936), 55, 61, 67; Lawrence to G.P. Harnwell, 20 Mar 1940 (14/22).

[146] M. White to Lawrence, 20 Aug and 22 Oct 1936, and Henderson to Lawrence, 25 Oct 1936 (9/6); Henderson and White, RSI, 9 (1938), 19–30.

[147] See table 5.6.

[148] Letter of 13 Dec 1937 (13/5).


264

Most cyclotroneers in partibus had to adjust their rates of performance and their levels of expectation. No one worked to Lawrence's pace. "It does take more time to get things done here in the East," Livingston discovered, pointing to a lack of "the complete stock of small things such as wires, insulation, adaptors, etc., that make things move so fast at Berkeley." Exner contrasted "the California habit of speed" with "the lethargic East." "If I haven't written you before," White wrote from Princeton, "that is because I am ashamed of the lack of progress here." The Laboratory ran almost at full tilt during summers; it came as a great surprise to Lyman, when he arrived to take up his job at Illinois in August 1938, that the physics department was closed. "The deadest place you have ever seen. . . . They take their vacation seriously around here."[149]

The men who went to help finish cyclotrons abuilding on the Continent expressed a double culture shock. Laslett, in Copenhagen: "Here things seem to be taken with reasonable calmness and if I work at night until . . . say 10:00 P.M., I feel like a scab in a fink joint." Taking things calmly, Laslett went on vacation with Otto Frisch, who was expected to be the director of the Copenhagen cyclotron. It was not Frisch but Laslett who felt obliged to cut short his tour to try a new improvement on the machine. The metabolism of the Danish physicists ran at a Berkeley pace, however, in comparison with the pulse in Paris, where Paxton found his colleagues harder to move than their 30-ton magnet.[150]

The ex-Berkeley cyclotroneers formed a brotherhood, to use White's word. The European branch—Sten von Friesen, Hurst, Kinsey, Laslett, Walke—met in England, then in Denmark and Sweden, and planned a session in Lapland. The midwestern brotherhood—those at Chicago, Illinois, and Indiana—exchanged visits and provided overnight stops for Lawrence or Cooksey, hurtling East or West. The brotherhood on the Atlantic seaboard—

[149] Letters to Lawrence from Livingston, 20 Sep 1934 (12/12), Exner, 26 Nov 1934 (9/21), and White, 21 Oct 1935 (18/23); Lyman to Cooksey, 7 Oct 1938 (12/19). Cf. Beams to Lawrence, 26 Oct 1936 (2/26): "Things of course are going slow with us compared to the pace you fellows set in your Radiation Laboratory."

[150] Laslett to Cooksey, 3 Oct 1937 (10/32); Frisch, What little , 106; Paxton to Cooksey, 22 Jan 1938, and to Lawrence, 26 Sep 1938 (14/18).


265

those at Bartol, Columbia, Harvard, MIT, and Princeton—were the ciceroni on a standard cyclotron tour.[151] In Livingston's analogy, the cyclotron laboratories were like the California missions; located from the Midwest eastward at convenient intervals, they assured travelling cyclotroneers a welcome and a place to stay or work. When the Great Cyclotroneer himself appeared, miracles occurred: Lawrence could cure machine ills and clear up financial and personal difficulties that had refused to yield to lesser medicine. For sinners who had tried on their own and failed, the mother church had a particular indulgence. "They are like babes in the wood," Cooksey wrote of the builders of the Purdue cyclotron, who had never seen the inside of one before beginning their labor, "and need a visit."[152]

These visits promoted more than camaraderie and nostalgia. Cyclotrons multiplied in part because Lawrence wished them to. "It would please me greatly," he wrote in answer to Columbia's request for his "fatherly blessing" on their project, "if various laboratories would build cyclotrons." It was the Laboratory's policy, as Cooksey put it, to be "most interested in giving what information it can to help those who are starting in this fairly new field."[153] A large portion of the very large correspondence of Lawrence and of Cooksey during the late 1930s is devoted to what the builder of the Yale cyclotron called "the usual generosity," that is, answering questions from perplexed or would-be cyclotroneers; providing blueprints of Berkeley machines and accessories to any laboratory seriously engaged in planning or building cyclotrons; lending or giving old parts. And they could do more. To assist Bohr and Joliot, Lawrence helped to obtain fellowships from the Rockefeller Foundation for Laslett and Paxton; to help the Japanese, he and Cooksey arranged for the delivery and machining of the steel and copper for the second Tokyo cyclotron.[154] The cyclotroneers in partibus shared this ethic. Ignorant

[151] Among much relevant correspondence, M. White to Cooksey, 14 Jan 1938 (18/21); Laslett to Cooksey and Abelson, [Apr 1938] (10/32); Hurst to Cooksey, 31 Jan 1938 (4/41); Capron, "Report," 2, 5; Tuve to Lawrence, 17 June 1939 (3/32).

[152] Barnes to Cooksey, [1938] (2/24); Allen to Lawrence, 18 Dec 1937 (1/14); Cooksey to Lawrence, 29 Sep (4/21).

[153] Lawrence to Pegram, 6 Feb 1935, answering Pegram's letter of 1 Feb (4/8); Cooksey to L.W. McKeehan (Yale), 28 June 1937 (18/38).

[154] Pollard to Cooksey, 22 Apr 1937 (14/30); infra, chap. 7 (the Europeans);(9/37) and Lawrence to Nagaoka, 19 Mar 1936 (9/33) and to Nishina, 18 Feb 1937, and Nishina to Lawrence, 21 Feb and 2 May 1938 (9/38) (the Japanese).


266

of or indifferent to the patent situation, they exchanged information freely among themselves and continued to contribute to the advance of the art at Berkeley by trying new techniques on their own machines. Several major improvements came forward in this manner, in particular the capillary source introduced by Livingston and tested at Princeton and Rochester and the quarter-wave transmission line pioneered at Illinois and Columbia.[155]

Although cyclotroneers worked in many environments much different from Berkeley's, they often enough were supported by the same means as Lawrence had dispensed. The federal government assisted elsewhere as it had in Berkeley. The navy gave generators and the 500-kilowatt Poulsen arc for which Cornell and Columbia competed; had the navy had more to distribute, the union of the arcs with experts from Berkeley would no doubt have made the country (to use the elegant phrase of a Westinghouse engineer) "lousy with cyclotrons." The quantity of gifts in kind to accelerator laboratories from the navy and the War Department got a high reading on the Nahmias detector: "[They] continually distribute many pieces of equipment: generators, pumping systems, copper, electromagnets, oil, rectifiers, etc., to everyone who knows how to wangle them." Columbia's successful wangle, to meet the navy's requirement that the Poulsen magnet serve vocational education, is worthy of attention: "The magnet will be used by graduate students in connection with their training in research . . . ; such training is strictly vocational as opposed to general cultural education."[156]

Opportunities for vocational training spread with the help of the foundations. After the National Research Council had played a brief and inexpensive part in Cornell and Illinois, the Research

[155] Some examples of interchange: Livingood to Lawrence, 3 June 1936 (12/11); Van Voorhis to Lawrence, 2 Aug 1937 (17/43), reporting from "the cyclotroneering front in the East;" Livingston to Cooksey, 3 June 1938 (12/12), sending copies of his description of the capillary source for forwarding to the "cyclotron mailing list;" Cooksey to Barnes, 29 Aug 1938 (2/24): "I guess each particular laboratory develops its own particular kinks which are useful to the others."

[156] Livingston to Lawrence, 20 Sep 1934 (12/12); R.P. Jackson, Westinghouse, to Lawrence, 28 Sep 1935 (18/19); Nahmias to Joliot, 24 Mar 1937 (JP, F25); Pegram to Lawrence, 1 Oct 1935 (4/8).


267

Corporation, with its eye to the patent situation, made a series of grants of $2,000 or $3,000 to start or improve cyclotrons. Among its beneficiaries were Chicago, Columbia, Cornell, Purdue, Rochester, and Stanford.[157] By 1939, however, the Corporation had sensed that there was little for it in the "mad, but orderly scramble" to multiply cyclotrons within the same energy range and it concentrated its diminishing investments in accelerators on a bet on Berkeley.[158] The enlargement of opportunity and costs attendant on radioisotope manufacture brought substantial contributions from the Rockefeller Foundation to cyclotron building in Copenhagen and Paris, and lesser amounts to Rochester, Saint Louis, and Stanford.[159] Like the Research Corporation, however, the Foundation apparently decided not to support new machines within established energy regions. In 1939 it had the courage to turn down Harvard's request for "a substantial annual grant for a period of years," much to the surprise of president Conant, who had sunk money in a medical cyclotron expecting that it would bring in foundation money easily.[160]

MIT tried the National Advisory Cancer Council, without issue, and then did very well at the Markle Foundation, with $30,000. Michigan tapped its Rackham funds, an endowment given by an organizer of the Ford Motor Company, for some $25,000 a year, which made Michigan the richest American cyclotron laboratory outside Berkeley. But the brotherhood did not live by bread alone; and something in the air at Michigan drove away the two

[157] For Chicago, Columbia, Cornell, Purdue, and Rochester, see the reports by Harkins (1937); Pegram, Hammett, and Dunning (1939); R.G. Gibbs and M.S. Livingston (1938); Lark-Horowitz (1937); and DuBridge (1940), respectively, in the series of bound reports at RC. Further to Rochester, DuBridge to Poillon, 9 Jul 1935 (RC); for Stanford, Bloch, Hammermesh, and Staub, PR, 64 (1943), 49, and Staub in Chodorow et al., Bloch , 196–7.

[158] Lawrence to Kruger, 7 Nov 1938, recommending applying for $2,000, and 16 May 1939 (10/20); Poillon to Lawrence, 17 Apr 1939 (9/20), re Indiana's application for $2,500 a year.

[159] For Copenhagen and Paris, infra §7.2 and §9.3. For Rochester, Weaver, "Diary," 30 Sep 1936, 9 and 20–1 Feb 1940; Rockefeller Foundation, minutes, 18 Mar 1938 and 2 Apr 1941; Stafford Warren to A. Gregg, 23 June 1939 and 21 Aug 1940; all in RF, 1.1/200. For Saint Louis, Lawrence to Whipple, 19 Jul 1939 (15/26A). For Stanford, Bloch, Hammermesh, and Staub, PR, 64 (1943), 49.

[160] H. Shapley to Weaver, 23 Feb 1939, and reply, 15 Mar 1939, and Conant to K.T. Compton, 31 May 1939 (UAV, 691.60/3).


268

Berkeley cyclotroneers, Thornton and Richardson, who started their extramural careers there.[161] To finish our parallels, had Lawrence had his way, the National Advisory Cancer Council would have given all the American cyclotron laboratories in existence in 1938 save Bartol, which he thought sufficiently supported by Dupont, enough to realize their potential for radioisotope production or medical therapy. No more than the Research Corporation or the Rockefeller Foundation, however, did NACC wish to dribble away its resources to a large number of equivalent laboratories.[162]

It is not practicable to learn how much of the cyclotroneers' salaries was paid by the various contributors to cyclotron laboratories, or, indeed, the magnitude of the contributions. But we can make a rough estimate of the capital investment, inclusive of labor, in American cyclotrons operating outside Berkeley by 1940. These machines cost or represented about $250,000 exclusive of the value of the buildings that housed them. With these structures they came to about $400,000. The cost of their operation from the time of their commissioning through 1940 would perhaps raise the total expenditure on them to something like the amount spent on cyclotrons at Berkeley during the 1930s.[163]

[161] R. Evans to Lawrence, 27 May 1938 (12/40), re Harvard; Lawrence to A.H. Compton, 7 Dec 1937 (13/29), and to Cottrell, 30 Mar 1934 and appended report (RC), re Rackham; Richardson to Lawrence, 11 May 1938 (37/8), on "the human atmosphere" at Michigan. Cf. S.W. Baker, Rackham funds (1955).

[162] Lawrence to A.H. Compton, 7 Dec (13/29): $10,000 each to Chicago, Columbia, Harvard, Michigan, and Princeton; $4,000 each to Purdue and Yale; $3,000 each to Cornell and Illinois; and $2,500 to Seattle, the last little doles to provide students with cyclotron experience, not the world with radioisotopes. MIT, which had no cyclotron, was to get $25,000.

[163] This number has been concocted from diverse and sometimes conflicting estimates by Lawrence, e.g., in letters to A.L. Hughes, 26 May 1938, 11 Feb and 14 Jul 1939 (18/12); to F.W. Loomis, 21 May 1938 (9/19); and to Detlev Bronk, 10 Dec 1934 (18/46); Cooksey to J.A. Gray, 24 Feb 1938 (14/38); and Hughes to Lawrence, 22 Jul 1939 (18/12). The $400,000 is estimated from Livingston, "Relative cost chart," Oct 1940 (12/12), as are also the cost of operations; it is not clear what his figures include.


269

V— Cast of Characters
 

Preferred Citation: Heilbron, J. L., and Robert W. Seidel Lawrence and His Laboratory: A History of the Lawrence Berkeley Laboratory, Volume I. Berkeley:  University of California Press,  c1989-. http://ark.cdlib.org/ark:/13030/ft5s200764/