Preferred Citation: Ames, Karyn R., and Alan Brenner, editors Frontiers of Supercomputing II: A National Reassessment. Berkeley:  University of California Press,  c1994 1994. http://ark.cdlib.org/ark:/13030/ft0f59n73z/


 
Supercomputing Alternatives

Conclusions

Alternative forms for supercomputing promise the brightest decade ever, with machines that have the ability to simulate and interact with many important physical phenomena.


328

Large, slowly evolving central systems will continue to be supplanted by low-cost, personal, interactive, and highly distributed computing because of cost, adequate performance, significantly better performance/cost, availability, user friendliness, and all the other factors that caused users of mainframes and minis to abandon the more centralized structures for personal computing. By the year 2000, we expect nearly all personal computers to have the capability of today's supercomputer. This will enable all users to simulate the immense and varied systems that are the basis of technical computing.

The evolution of the traditional supercomputer must change to a more massively parallel and scalable structure if it is to keep up with the peak performance of evolving new machines. By 1995, specialized, massively parallel computers capable of a TFLOPS (1012 floating-point operations per second) will be available to simulate a much wider range of physical phenomena.


Supercomputing Alternatives
 

Preferred Citation: Ames, Karyn R., and Alan Brenner, editors Frontiers of Supercomputing II: A National Reassessment. Berkeley:  University of California Press,  c1994 1994. http://ark.cdlib.org/ark:/13030/ft0f59n73z/