previous chapter
Parallel Algorithms and Implementation Strategies on Massively Parallel Supercomputers*
next sub-section

Introduction

This presentation is on parallel algorithms and implementation strategies for applications on massively parallel computers. We will consider examples of new parallel algorithms that have emerged since the 1983 Frontiers of Supercomputing conference and some developments in MIMD parallel algorithms and applications on first-and second-generation hypercubes. Finally, building upon what other presenters at this conference have said concerning supercomputing developments—or lack thereof—since 1983, I offer some thoughts on recent changes in the field.

We will draw primarily on our experience with a subset of the parallel previous hit architectures next hit that are available as of 1990, those being nCUBE Corporation's nCUBE 2 and nCUBE/ten Hypercubes and Thinking Machines Corporation's CM-2 (one of the Connection Machine series). The nCUBE 2 at Sandia National Laboratories has 1024 processors with four megabytes of local memory per processor, whereas the nCUBE/ten has the same number of processors but only 0.5 megabytes of memory per processor. The CM-2 is presently configured with 16K single-bit processors, 128 kilobytes of memory per processor, and 512 64-bit floating-point coprocessors. This conference has already given considerable attention to the virtues and pitfalls of SIMD previous hit architecture next hit, so I think it will be most profitable to focus this short presentation on the state of affairs in MIMD previous hit architectures next hit.

An interdisciplinary research group of about 50 staff is active in parallel computing at Sandia on the systems described above. The group includes computational scientists and engineers in addition to applied mathematicians and computer scientists. Interdisciplinary teams that bring together parallel-algorithm and applications researchers are an essential element to advancing the state of the art in supercomputing.


previous chapter
Parallel Algorithms and Implementation Strategies on Massively Parallel Supercomputers*
next sub-section