previous sub-section
Current Status of Supercomputing in the United States
next sub-section

Human Resources

People are the crucial resource. People generate the knowledge that allows us to create new technologies. We need more scientists and engineers, but we are not producing them.

In the last decade, employment of scientists and engineers grew three times as fast as total employment and twice as fast as total professional employment. Most of this growth was in the service sector, in which employment of scientists and engineers rose 5.7 per cent per year for the last decade. But even in the manufacturing sector, where there was no growth at all in total employment, science and engineering employment rose four per cent per year, attesting to the increasing technical complexity of manufacturing.

So there is no doubt about the demand for scientists and engineers. But there is real doubt that the supply will keep up. The student population is shrinking, so we must attract a larger proportion of students into science and engineering fields just to maintain the current number of graduates.

Unfortunately, the trend is the other way. Freshman interest in engineering and computer sciences decreased during the 1980s, but it increased for business, humanities, and the social sciences. Baccalaureates in mathematics and computer science peaked in 1986 and have since declined over 17 per cent. Among the physical and biological sciences, interest has grown only marginally.


27

In addition, minorities and women are increasingly important to our future work force. So we must make sure these groups participate to their fullest in science and engineering. But today only 14 per cent of female students, compared to 25 per cent of male students, are interested in the natural sciences and engineering in high school. By the time these students receive their bachelor's degrees, the number of women in these fields is less than half that of men. Only a tiny fraction of women go on to obtain Ph.Ds.

The problem is even worse among Blacks, Native Americans, and Hispanics at every level—and these groups are a growing part of our population. Look around the room and you can see what I mean.

To deal with our human-resources problem, NSF has made human resources a priority, with special emphasis on programs to attract more women and minorities. At the precollege level, our budget has doubled since 1984, with many programs to improve math and science teachers and teaching. At the undergraduate level, NSF is developing new curricula in engineering, mathematics, biology, chemistry, physics, computer sciences, and foreign languages. And we are expanding our Research for Undergraduates Program.

My question to you is, how good are our education courses in computer science and engineering? How relevant are they to the requirements of future employers? Do they reflect the needs of other disciplines for new computational approaches?


previous sub-section
Current Status of Supercomputing in the United States
next sub-section