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STATICS

Unitsand Dimensions

In the preceding chapters, different units have been introduced
without strict definitions, but now it is necessary to define both units
and dimensions. The word “dimension” in the English language is used
with two different meanings. In everyday language, the term “ dimen-
sions of an object” refers to the size of the object, but in physics “ dimen-
sions*’ mean the fundamental categories by means of which physical
bodies, properties, or processes are described. In mechanics and hydro-
dynamics, these fundamental dimensions are mass, length, and time,
denoted by M, L, and T. When using the word “ dimension” in this
sense, no indication of numerical magnitude is implied, but the concept is
emphasized that any physical characteristic or property can be described
in terms of certain categories, the dimensions. This will be clarified by
examples on p. 402.

FUNDAMENTALUNITS. In physics the generally accepted units of
mass, length, and time are gram, centimeter, and second; that is, quanti-
ties are expressed in the centimeter-gram-second (c.g.s.) system. In
oceanography, it is not always practicable to retain these units, because,
in order to avoid using large numerical values, it is convenient to measure
depth, for instance, in meters and not in centimeters. Similarly, it is
often practical to use one metric ton as a unit of massinstead of one gram.
The second is retained as the unit of time. A system of units based on
meter, ton, and second (the m.t.s. system) was introduced by V. Bjerknes
and different collaborators (1910). Compared to the c.g.s. system the
new units are 1 m = 102cm, 1 metric ton = 106 g, 1 see = 1 sec. For
thermal processes, the fundamental unit, l“C, should be added.

Unfortunately, it is not practical to use even the m.t.s. system con-
sistently. In several cases it is of advantage to adhere to the c.g.s.
system in order to make resultsreadily comparable with laboratory results
that are expressed in such units, or because the numerical values are
more conveniently handled in the c.g.s. system. When measuring hori-
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zontal distances, on the other hand, it is preferable to use larger units
such as kilometers, statute miles, or nautical miles. In’ oceanography
it is therefore always necessary to indicate the units in which any quan-
tity is measured.

DERIVEDUNITS. Units in mechanics other than mass, 114,length, L,
and time, T, can be expressed by the three dimensions, M, L, and T,
and by the unit values adopted for these dimensions. Thus, velocity
has the dimension length divided by time, which is written as LT-l and
is expressedin centimetersper second or in meters per second. Velocity,
of course, can be expressed in many other units, such m nautical miles
per hour (knots), or miles per day, but the dimensions remain unaltered.
Acceleration is the time change of a velocity and has the dimensions
LT-2. Force is mass times acceleration and has dimensions ikfLT-~.

Table 60 shows the dimensions of a number of the terms that will be
used. Several of the terms in the table have the same dimensions, but
the concepts o? which the terms are based differ. Work, for instance,
is defined as force times distance, whereas kinetic energy is defined as
mass times the square of a velocity, but work and kinetic energy both
have the dimensions iWL2T-2. Similarly, one and the same term can be
defined differently, depending upon the concepts that are introduced.
Pressure,for instance, can be defined as work per unit volume, ML2T–2L–3
= NL-’T-Z, but is more often defined as force per unit area, MLT-2L–2
= ~L-lj77-2.

TABLE 60
‘-T” DIMENSIONSAND UNITS OF TERMS USEDIN MECHANICS ‘

Term

Fcmdwnmtal unit
Mesa
Lensith
Tim%

Derivedunit
Velooity
Aooeler&ion
Augular velocity
Momentum
Force
lmpuIse
Work
Kinetic energy
Activity (power)
Demity
Speci6c volume
Precsure
Gravity potential
Dynamio viscasity
Kinematic visccaity
Diffusion

Dimen- IJnit in c.g.s. system I Unit in m.t.s. 8yatem
aion

M g metrio ton - 106 g

L cm meter = 10S om
T 8ec seo

LT-1 cm/8ec m/see = 100 cm/8ec
LT-, om/see~ m,laecq = 100 em/secS
T-1 I[eae l/8ec
ML T-l g em/8ec ton m/see = 10$ g om/sec
lWLT-~ g om/sec~ = 1dyne ton m/se@ = 108 dynes
ML T-l g cm/8ec ton m/see = 10$ g cm/8ee
J.fL%T-Z ~ ~m*/~ec9 = 1 ~rg ton m9/see* = 1 kilojoule
3.f&2T-2 g ~ma/8ec% = 1 ~~g tan m2/sec~ = 1 kilojoule
ML%T-8 g cm2/sec~ = erg/see ton m2/see* = 1 kilowatt
~L-8 g/cm$ tOn/m8 = g/cm8
Jf-1L8 ~m8/g ~8/t*n = ~@/g

ML-IT-* g/cm/secZ = dyne/em2 ton/m/aec2 = 1 oentibar
LIT-2 ~m%/*e& ~2/Eee9 ~ 1 dyna~i~ deoimeter

bfL-IT-X g/Cm/8eC tOn/m/sec = 10$ g/cm/see
L%T-1 ~m2/*ea @/~ec = 104 ~m2/8ec

L2T-1 ~ml/g$e ~2/ee~ = 104 ~m2/@~

In any equation of physics, all terms must have the same dimensions,
or, applied to mechanics, in all terms the exponents of the fundamental
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dimensions, M, L, and l’, must be the same. It is inaccurate, for
instance, to state that the acceleration of a body is equal to the sum of the
forces acting on a body, because acceleration has dimensions LT-2,
whereas force has dimensions ik?LT-2. The correct statement is that
the acceleration of a body is equal to the sum of the forces per unit
massacting on a body. An example of a correct statement is the expres-
sion for the pressure exerted by a column of water of constant density,
p, and of height, h, at a locality where the acceleration of gravity is g:

p = Pgh.
.

In this case the dimensions on both sides of the equality sign are

Some of the constants that appear in the equations of physics have
dimensions, and their numerical values will therefore depend upon the
particular units that have been assigned to the fundamental dimensions,
whereas other constants have no dimensions and are therefore independ-
ent of the system of units. Density has dimensions ML-3, but the den-
sity of pure water at 4° has the numerical value 1 (one) only if the units
of mass and length are selected in a special manner (grams and centi-
meters or metric tons and meters). On the other hand, the specific .
gravity, which is the density of a body relative to the density of pure
water at 4°, has no dimensions (ML–$/ML–3) and is therefore expressed
by the same number, regardlessof the system of units that is employed.

The Fieldsof Gravity, Pressure,and Mass

LEVELSURFACES.Coordinate surfaces of equal geometric depth
below the ideal sea surface are useful when considering geometrical
features, but in problems of statics or dynamics that involve considera-
tion of the acting forces, they are not always satisfactory. Because the
gravitational force represents one of the most important of the aoting
forces, it is convenient to use as coordinate surfaces the level surfaces,
defined as surfaces that are everywhere normal to the force of gravitg. It
will presently be shown that these surfaces do not coincide with surfaces
of equal geometric depth.

It follows from the definition of level surfaces that, if no forces other
than gravitational are acting, a mass can be moved along a level surface
without expenditure of work and that the amount of work expended or
gained by moving a unit mass from one surface to another is independent
of the path taken.

The amount of work, W, required for moving a unit mass a distance,
h, along the plumb line is

W = gh,
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where g is the acceleration of gravity. Work per unit mass has dlmen-
siona L2Z’-2, and the numerical value depend~ therefore only on the
units used for length and time. When the length is measured in meters
and the time in seconds, the unit of work per unit mass is called a d~namic
decimeter (Bjerknes and different collaborators, 1910).

In the following, the sea surface will be considered a level surface.
The work required or gained in moving a unit,mass from sea level to a
point above or below sea level is called the gravity potential, and in the
m.t.s. system the unit of gravity potential is thus one dynamic decimeter.

The practical unit of the gravity potential is the dynamic meter,
for which the symbol D is used. When dealing with the sea the vertical
axis is taken as positive downward. The geopotential of a level surface
at the geometrical depth, z, is therefore, in dynamic meters,

The geometrical depth in meters of a given
hand, is

z =. 10
s

D ~ dD.
09

(XII, 1)

level surface, on the other

(XII, 2)

The acceleration of gravity varies with latitude and depth, and the
geometrical distance between s$andard level surfaces therefore varies
with the coordinates. At the North Pole the geometrical depth of the
1000-dynamic-meter surface is 1017.0 m, but at the Equator the depth
is 1022.3m, because g is greater at the Poles than at the Equator. Thus,
level surfaces and surfaces of equal geometric depth do not coincide. ~
Level surfaces slope relative to the surfaces of equal geometric depth,
and therefore a component of the acceleration of gravity acts along
surfaces of equal geometrical depth.

The topography of the sea bottom is represented by means of iso-
baths—that is, linesof equal geometrical depth—but it could be presented
equally well by means of lines of equal geopotential. The contour lines I
would then represent the lines of intersection between the level surfaces
and the irregularsurface of the bottom. These contours would no longer
be at equal geometric distances, and hence would differ from the usual
topographic chart, but their characteristicswould be that the amount of
work needed for moving a given mass from one contour to another would
be constant. They would also represent the new coast lines if the sea
level were lowered without alterations of the topographic features of the
bottom, provided the new sea level would assume perfect hydrostatic
equilibrium and adjust itself normal to the gravitational force.

Any scalar field can similarly be represented by means of a series
of topographic charts of equiscalar surfaces in which the contour lines
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represent the lines of intersection of the level surfaces with the equi-
scalar surface. Charts of this character will be called geopotential topo-
graphic charts, or charts of geopotentiul topography, in contrast to
topographic charts in which the contour lines represent the lines along
which the depth of the surface under consideration is constant.

THE FIELDOF GRAVITY. The fact that gravity is the resultant of
two forces, the attraction of the earth and the centrifugal force due to the
earth’s rotation, need not be considered, and it is sufficient to define
gravity as the force that is derived empirically by pendulum observations.
Furthermore, it is not necessary to take into account the minor irregular
variations of gravity that detailed surveys reveal, but it is enough to make
use of the ‘(normal” value, in meters per second per second, which at sea
level can be represented as a function of the latitude, p, by Helmert’s
formula:

go = 9.80616(1 – 0.002644 COS 2P + 0.000007 COS.22qJ).

Thus, the normal value at the poles is 9.83205, and at the Equator it is
9.78027. ‘I’he normal value of g increases with depth, according to the
formula

9 = go + 2.202 x 10–%.

From formula (XII, 1) one obtains in dynamic meters the geopotential
that corresponds to a given depth, z:

D = (&z + 0.1101 x 1O-%P,

or from (XII, 2) the depth corresponding to a given value of D:

z = # D – 0.1168 X 10-6D2.

In the first approximation,

D = 0.98z and z = 1.02D,

meaning that the numbers which represent the depth in meters deviate
only by about 2 per cent from the numbers which represent the geo-
potential in dynamic meters. Extensive use will be made of this numeri-
cal agreement between the two units, but it must always be borne in
mind that a dynamic meter is a measure of work per unit mass, and not
a measureof length. The conversion factors, 0.98 and 1.02, are therefore
not pure numbers, but the former has the dimensionsLT-2 and the latter
has the dimensionsL–lTZ.

The field of gravity can be completely described by means of a set
of equipotential surfaces
gravity potential. These

corresponding to standard intervals of the
are at equal distances if the geopotential is
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used as the vertical coordinate, but, if geometric. depth is used, the
distance between the eqnipotential surfaces varies. If the field is
represented by equipotential surfaces at intervals of one dynamic
decimeter, it follows from the definition of these surfaces that the numeri-
cal value of the acceleration of gravity is the reciprocal of the geometric
thickness in meters of the unit sheets.

TEE FIELDOF PRESSVRE. The distribution of pressure in the sea
can be determined by means of the equation of static equilibrium:

dp = iipe,a,Pgdz. (XII, 3)

Here, k is a numerical factor that depends on the units used, and pg,o,P is
the density of the water (p. 56).

The hydrostatic equation will be discussed further in connection with
the equations of motion (p. 440). At this time it is enough to emphasize
that, as far as conditions in the ocean are concerned, the equation, for
all practical purposes, is exact.

Introducing the geopotential expressed in dynamic meters as the
vertical coordinate, one has 10dD = gdz. When the pressureis measured
in decibars (defined by 1 bar = 106 dynes per square centimeter), the
factor k becomes equal to }io, and equation (XII, 3) is reduced to

dp = P8,ff,pd~? or dD = a.,@ip,

where a,,~,Pis the specific volume.
Because p.,~,P and a~,~,gdiffer little from unity, a difference in pressure

is expressed in decibars by nearly the same number that expresses the
difference in geopotential in dynamic meters, or the difference in geo-
metric depth in meters. Approximately,

pl – p2=I)1-D2==z1-.z2.

The pressure field can be completely described by means of a system
of isobaric surfaces. Using the geopotential as the vertical coordinate,
one can present the pressure distribution by a series of charts showing
isobars at standard level surfaces or by a series of charts showing the
geopotential topography of standard isobaric surfaces. In meteorology,
the former manner of representation is generally used on weather maps,
in which the pressure distribution at sea level is represented by isobars.
In oceanography, on the other hand, it has been found practical to
represent the geopotential topography of isobaric surfaces.

The pressuregradientis defined by

G
dp=—— ,
dn

where n is dhected normal to the isobaric surfaces (p. 156). The pressure
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gradient has the character of a force per unit volume, because pressurehae
the dimensions of a force per unit area. The dimension of a pressure is
ML-IT-Z = M.L!f’-2 X L-2, and the dimension of a pressure gradient is
ML-2 T-2 = MLT-2 X L-8. Multiplying the pressure gradient by the
specific volume, lf-1L3, one obtains a force per unit mass of dimensions
LT-2.

The pressure gradient has two principal components: the vertical,
directed normal to the level surfaces, and the horizontal, directed parallel
to the level surfaces. When static equilibrium exists, the vertical com-
ponent, expressed as force per unit mass, is balanced by the acceleration
of gravity. This is the statement which is expressed mathematically
by means of the equation of hydrostatic equilibrium. In a resting
system the horizontal component of the pressuregradient is not balanced
by any other force, and therefore the existence of a horizontal pressure
gradient indicates that the system is not at rest or cannot remain at rest.
The horizontal pressure gradients, therefore, although extremely small,
are all-important to the state of motion, whereas the vertical are insig-
nificant in this respect.

It is evident that no motion due to pressure distribution exists or
can develop if the isobaric surfaces coincide with level surfaces. In
such a state of perfect hydrostatic equilibrium the horizontal pressure
gradient vanishes. Such a state would be present if the atmospheric
pressure, acting on the sea surface, were constant, if the sea surface
coincided with the ideal sea level and if the density of the water depended
on pressure only. None of these conditions is fulfilled. The isobaric
surfaces are generally inclined relative to the level surfaces, and hori-
zontal pressuregradients are present, forming a field of internal force.

This field of force can also be defined by considering the slopes
of isobaric surfaces instead of the horizontal pressure gradients. By
definition the pressure gradient along an isobaric surface is zero, but, if
this surface does not coincide with a level surface, a component of the
acceleration of gravity acts along the isobaric surface and will tend to
set the water in motion, or must be balanced by other forces if a steady
state of motion is reached. The internal field of force can therefore be
representedalso by means of the component of the acceleration of gravity
along isobaric surfaces (p. 440).

Regardless of the definition of the field of force that is associated
with the pressure distribution, for a complete description of this field
one must know the absolute isobars at level surfaces or the absotute
geopotential contour lines of isobaric surfaces. These demands cannot
possibly be met. One reason is that measurements of geopotential
distances of isobaric surfaces must be made from the actual sea surface,
the topography of which is unknown. It will be shown that all one can
do is to determine the pressurefield that would be present if the pressure



STATICS AND Kinematics 407

distribution depended only upon the distribution of mass in the sea.
This part of the total pressure field will be called the rekdiw jieid oj
preswwe,but it cannot be too strongly emphasised that the toW $eld oj
pressure is composed of this relative field and, in addltiori, a field that
is maintained.by external forces such as atmospheric pressure and wind.

In order to illustrate this point a fresh-water lake will be considered
which is so small that horizontal differences in atmospheric pressure
can be disregarded and the acceleration of gravity can be considered
constant. Let it first be assumed that the water is homogeneous,
meaning that the density is independent of the coordinates. In this
case, the distance between any two isobaric surfaces is expressed by the
equation

Ah = ~ Ap. (XII, 4)

This equation simply states that the geometrical distance between iso-
baric surfaces is constant, and it defines completely the internal field of
pressure. The total field of pressure depends, however, upon the
configuration of the free surface of the lake. If no wind blows and if
no stress is thus exerted on the free surface of the lake, perfect hydro-
static equilibrium exists, the free surface is a level surface, and, similarly,
all other isobaric surfaces coincide with level surfaces. On the other
hand, if a wind blows across the lake, the equilibrium will be disturbed,
the water level will be lowered at one end of the lake, and water will be
piled up against the other end. The free surface will still be an isobaric
surface, but it will now be inclined relative to a level surface. The
rela$i~efield of pressure, however, will remain unaltered as represented
by equation (XII, 4), meaning that all other isobaric surfaces will have
the same geometric shape as that of the free surface.

One might continue and introduce a number of layers of different
density, and one would find that the same reasoning would be applicable.
The method is therefore also applicable when one deals with a liquid
wit~ln which the density changes continually with depth. By means of
observations of the density at different depths, one can derive the relative
field of pressureand can represent this by means of the topography of the
isobaric surfaces re.ktive to some arbitrarily or purposely selected isobaric
surface. The relative field of force can be derived from the slopes of the
isobaric surface relative to the selected reference surface, but, in order
to find the absolute field of pressure and the corresponding absolute
field of force, it is necessary to determine the absolute shape of one
isobaric surface.

These considerations have been set forth in great detail because
it is essential to be fully aware of the difference between the absolute
field of pressureand the relative field of pressure,and to know what types
of data are needed in order to determine each of these fields.
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TKE l?IE~DOF MASS. The field of mass in the ocean is generally
described by means of the specific volume as expressed by (p. 57)

The field of the specific volume can be considered as composed of two
fields, the field of a,,,o,p and the field of &

The former field is of a simple character. The surfaces of ~85,0,p

coincide with the isobaric surfaces, the deviations of which from level
surfaces are so small that for practical purposes the surfaces of CYS5,0,P

can be considered as coinciding with level surfaces or with surfaces of
equal geometric depth. The field of CW,,O,Pcan therefore be fully described
by means of tables giving CY35,0,P as a function of pressure and giving the
average relationships between pressure, geopotential and geometric
depths. Since this field can be considered a constant one, the field of
mass is completely described by means of the anomaly of the specific
volume, d, the determination of which was discussed on p. 58.

The field of mass can be represented by means of the topography of
anomaly surfaces or by means of horizontal charts or vertical sections
in which curves of 8 = constant are entered. The latter method is the
most common. It should always be borne in mind, however, that the
specific volume @ situis equal to the sum of the standard specific volume,
a35,o,p,at the pressure in situ and the anomaly, ~.

THE RELATIVEFIELDOF PRESSURE.It is impossible to determine
the relative field of pressurein the sea by direct observations, using some
type of pressure gauge, because an error of only 0.1 m in the depth of a
pressure gauge below the sea surface would introduce errors greater
than the horizontal differences that should be established. If the field
of mass is known, however, the internal field of pressure can be deter-
mined from the equation of static equilibrium in one of the forms

dp = pdD or dD = adp.

In oceanography the latter form has been found to be the more practical,
but all reasoning applies equally well to results deduced from the former.

Integration of the latter form gives

Because (x*,$fp= a35,fJ,* + d,

one can write

(D, –
1

‘* ddp,D,), i- AD = ~’ wi,o,pdp + p, (XII, 6)

where (D, – D2)* = ~ cwo,pdp

and is called the standard geopotential distance between the isobaric
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surfaces PI and pz, and where

AD=~c3dp (XII, 7)

is oalled the anomaly of the geopotential distance between the isobaric
surfaces PI and pz, or, abbreviated, the geopotentkl anomaly.

Equation (XII, 6) can be interpreted as expressing that the relative
field of pressure is composed of two fields: the standard field and the
fierd of anomalies. The standard field can be determined once and for
all, because the standard geopotential distance between isobaric surfaces
represents the distance if the salinity of the sea water is constant at
85 0/00 and the temperature is constant at O°C. The standard geo-
potential distance decreaseswith increasing pressure,because the specific
volume decreases(density increases)with pressure,as isevident from table
7H in Bjerknes (1910), according to which the standard geopotential
distance between the isobaric surfaces O and 100 decibars is 97.242
dynamic meters, whereas the corresponding distance between the 5000-
and 5100-decibar surfaces is 95.153 dynamic meters.

The standard geopotential distance between any two standard
isobaric surfaces is, on the other hand, independent of latitude, but
the geometric dwtance between isobaric surfaces varies with latitude
because g varies.

Because in the standard field all isobaric surfaces are parallel relative
to each other, this standard field lacks a ~e.?ai%vefield of horizontal force.
The relative field of force, which is associated with the dhtribution of
mass, is completely described by the field of the geopotential anomalies.
It follows that a chart showing the topography of one isobaric surface
relative to another by means of the geopotential anomalies is equivalent
to a chart showing the actual geopotential topography of one isobaric
surface relative to another. The practical determination of the relative
field of pressure is therefore reduced to computation and representation
of the geopotential anomalies, but the absolute pressure field can be
found oidy if one can determine independently the absolute topography
of ,one isobaric surface.

In order to evaluate equation (XII, 7), it is necessary to know the
anomaly, 3, as a function of absolute pressure. The anomaly is com-
puted from observations of temperature and salinity, but oceanographic
observations give information about the temperature and the salinity at
known geometrical depths below the actual sea surface, and not at known
pressures. Thk difficulty can fortunately be overcome by means of an
artificial substitution, because at any given depth the numerical value of
the absolute pressure expressed in decibars is nearly the same as the
numerical value of the depth expressed in meters, as is evident from the
following corresponding values:
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Standardseapressure (decibars). . . . . . . . . . . 1000 2000 3000 4000 5000 6000
Approximate geometric depth (m). ., . . . . . , . 990 1975 2956 3933 4906 5875

Thus, the numerical values of geometric depth deviate only 1 or 2 per
cent from the numerical values of the standard pressure at that depth.
This agreement is not accidental, but has been brought about by the
selection of the practical unit of pressure, the decibar.

It follows that the temperature at a pressure of 1000 decibars is
nearly equal to the temperature at a geometric depth of 990 m, or $he
temperature at the pressure of 6000 decibars is nearly equal to’ the
temperature at a depth of 5875 m. The vertical temperature gradients
in the ocean are small, especially at great depths, and therefore no serious
error is introduced if, instead of using the temperature at 990 m when
computing 6, one makes use of the temperature at 1000 m, and so on.
The difference between anomalies for neighboring stations will be even
less affected by this procedure, because within a limited area the vertical
temperature gradients will be similar. The introduced error will be
nearly the same at both stations, and the difference will be an error of
absolutely negligible amount, In pr%ctice one can therefore consider .
the numbers that represent the geometric depth in meters as representing
abaolute pressure in deuibar$. If the depth in meters at which either
directly observed or interpolated values of temperature and salinity
are available is interpreted as representing pressure in decibars, one can
compute, by means of the tables in the appendix, the anomaly of specific
volume at the given pressure. By multiplying the average anomaly of
specific volume between two pressures by the difference in pressure in
decibars (which is considered equal to the difference in depth in meters),
one obtains the geopotential anomaly of the isobaric sheet in question
expressed in dynamic meters. By adding these geopotential anomalies,
one can find the correspondhg anomaly between any two given pres-
sures. An example of a complete computation is given in table 61.

Certain simple relationships between the field of pressure and the
field of mass can be derived by means of the equations for equiscalar
surfaces (p, 155) and the hydrostatic equation. In a vertical pfofile the
isobars and the isopycnak are defined by

The inclinations of the isobars and isopycnals are therefore

ap/8x .ip
ap/a~— .

= - @Z%’ ‘p = - ap/dz

By means of the hydrostatic equation
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TABLE 61

EXAMPLEOF COMPUTATIONOF ANOMALIESOF DYNAMIC DEPTH
(StationE. W. ScrippsI-8. Lat. 32°57’N, .ong. 122°07’W. February17, 1938)

Metersor
deoibars

o... . . . . .
lo . . . . . . . .
25.., . . . . .
50. . . . . . . .
75. . . . . . . .

100 . . . . . . . .
150. . . . . . . .
200. . . . . . . .
250. . . . . . .
300. . . . . . . .
400. . . . . . . .
500. . . . . . . .
600. . . . . . . .
800. . . . . . . .

1000. . . . . . .
1200. . . . . . . .
1400. . . . . . .
1600. . . . . . . .
1800. . . . . . .
2000. . . . . . .
3000. . . . . . .
4000. . . . . . .

remp.
(“c)

.—

14.22
13.72

.71

.35
9.96

.38
8.82

.48
‘ .30
7.87

.07
6.14
5.51
4.65
3.99

.52

.07
2.69

.37

.13
1.62

.50

$lalin-
ity

(O/.O)

33.25
.24 I
.24
.30
.57
.84
.98

34.09
.16
.20
.20
.26
.35
.42
.44
.52
.54
.56
.59
.64
.68
.7-0

qt

4.81
.91
.91

5.03
.86

6.17
.37
.51
.59
.69
.80
.97

7.12
.28
.36
.48
.54
,59
.64
.69
.76
.81

106A,,$

315.0
305.5
305.5
294.2
215.2
185.7
166.5
153.5
145,9
136.4
125.9
109.8
95.6
80.4
72.9
61.5
55.8
51.1
46.3
41.6
35.0
30.2

-

.0%,,p

-0.1
–0.2
-0.3
-0.3
-0.3
-0.4
–0.5
–0,6
-0.7
-0.8
-1.0
–l. !2
–1.4
–1.0
-1,0
–1.0
-1,1
-1.4
–1.7

10%*<P

0.3
0.7
1.3
1.6
2.0
2.9
3.7
4.6
5.2
6,4
7.2
7.9
8.9
9.8

10.3
10.8
10.9
10.8
10.6
11.7
14.1

,066

315
306
306
296
?17
187
169
157
150
141
132
116
103
88
82
70
66
61
56
51
45
43

AD
AD (dynamic

meter)

!
.0310
.0459

.0310

.0769
.0752 .~521
.0641
.0505

.2162

:0890
.2667

.0815 .3557

.0768
.4372

.0728 :;:;

.1365
.7233.1240 .~73

.1095 .9568

:y~: 1.1478

;;5& ; ::;:8

1.606
: ;;; 1.733

1.850
‘ 1070 1.957
:g;: 2.437

2.877

one obtains

gpip = – ap/ax,

From the two latter equations it follows that

:(p’a=++!

s(@P)’2 – (P~P)l = 12 ‘4 g“

If the density distribution is representedby means of unit sheets (p. 156),
the integral on the right-hand side can be evaluated

(P’M2 – (P’Ml = UP2 – PA (XII, 8)

where Z@means the average inclination of unit sheets. The isob$%ic
surface PI lies above the surface p%,because the vertical axis is positive
downward. The inclination of the upper isobaric surface relative to the
lower, iP,_P2,therefore, when an average value of the density is intro-
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duced, is

~P1-P2 = -;, ~’.

P

Using the specific volume anomaly and making the specific volume equal
to unity, one obtains approximately

k-m = —:$(61 — 32). (XII, 9)

Because 6 decreases with depth, & – & is positive, and the inclination
of one isobaric surface relative to another is of opposite sign to the
inclination of the 6 surfaces (p. 449). This rule permits a rapid estimate
of the relative inclinations of isobaric surface in a section in which the
field of mass has been represented by ~ curves.

Profiles of isobaric surfaces based on the data from a seriesof stations
in a section must evidently be in agreement with the inclination of the 6
curves, as shown in a section and based on the same data, but this obvious
rule often receives little or no attention.

RELATIVE GEOPOTENTIALTOPOGRAPHYOF ISOBARICSURFACES.
If simultaneous observations of the vertical distribution of temperature
and salinity were available from a number of oceanographic stations
within a given area, the relative pressuredistribution at the time of the
observations could be represented by a series of charts showing the geo-
potential topography of standard isobaric surfaces relative to one
arbitrarily or purposely selected reference surface. From the preceding
it is evident that these topographies are completely representedby means
of the geopotential anomalies.

In practice, simultaneous observations are not available, but in
many instances it is permissible to assume that the time changes of the
pressuredistribution are so small that observations taken within a given
period may be considered simultaneous. The smaller the area, the
shorter must be the time interval within which the observations are
made. Figs. 110, p. 454 and 204, p. 726, represent examples of geo-
potential topographies. The conclusions as to currents which can be
based on such charts will be considered later.

Charts of geopotential topographies can be prepared in two different
ways. By the common method, the anomalies of a given surface relative
to the selected reference surface are plotted on a chart and isolines are
drawn, following the general rules for presenting scalar quantities. In
thk manner, relative topographies of a series of isobaric surfaces can be
prepared, but the method has the disadvantage that each topography
is prepared separately.

By the other method a series of charts of relative topographies is
prepared stepwise, taking advantage of the fact that the anomaly of geo-
potential thickness of an isobaric sheet is proportional to the average
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“ specific volume anomaly, ~, in the.ieobmio sheet. Thus, if the thickness
of the isobaric sheet is 100 decibars, AD&lOO= 100& Consequently,
curves of 1003 represent the topography of the surface p = PI — 100
relative to the surface p = PI, and one can proceed as follows: The topog-
raphy of the surface p. – 200, where p. is the selected reference surface$
is constructed by means of curves of equal values of the specific volume
anomaly in the sheet p, to p, -100. The topography of the surface
Pe – 200 relative to the surface p, - 100 is constructed by means of the
specific volume anomalies in the sheet p, — 100 to p, — 200, and by
graphical addition of these two charts (V. Bjerkmw and collaborators,
1911) the topography of the surface p. -200 relative to the surface
p, is found. This process can be repeated, and by successive construc-
tions of charts and specific volume anomaliesand by graphical additions,
the entire fields of mass and pressure can be represented.

This method is widely used in meteorology, but is not commonly
employed in oceanography because, for the most part, the different
systems of curves are so nearly parallel to each other that graphical
addition is cumbersome. The method is occasionally useful, however,
and has the advantage of showing clearly the relationship between the
distribution of mass and the distribution of pressure. It especially
brings out the geometrical feature that the isohypses of the isobaric
surfacesretaintheir form when passingfrom one isobaricsurfaceto another
only if the anomaly curves are of the same form as the isohypses. This
characteristic of the field is of great importance to the dynamics of the
system.

CHARACTEROF THETOTALFIELDOF PRESSWRE.From the above
discussion it is evident that, in the absenceof a relative field of pressure,
isosteric and isobaric surfaces must coincide. Therefore, if for some
reason one isobaric surface, say the free surface, deviates from a level
surface, then all isobaric and isosteric surfaces must deviate in a similar
manner. Assume that one isobaric surface in the disturbed condition
lies at a distance Ah cm below the position in undisturbed conditions.
Then all other isobaric surfaces along the same vertical are also dis-
placed the distance Ah from their undisturbed position. The distance
M. is positive downward because the positive z axis points downward.
Call the pressure at a given depth at undisturbed conditions PO. Then
the pressure at disturbed conditions is P6 = PO – flp, where Ap = gpAh
and where the displacement Ah can be considered as being due to a
deficit or an excess of mass in the water column under consideration.

The above considerations are equally valid if a relative field of
pressure exists. The absolute distribution of pressure can always be
completely determined from the equation

pt = PO– gpAh,
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and would therefore be fully known if one could determineAh, the vertical
displacement of the isobaric surfaces due to excess or deficit of mass in
the column under consideration, An added horizontal field of force is
present when this vertical displacement varies from one locality to
another, in which case the absolute isobaric surfaces slope in relation to
the isobaric surfaces of the relative field. The added field can be called
the slope field, and this analysis thus leads to the result that the total
field of pressure is composed of the internal field and the slope field.
This distinction is helpful when discussing the character of the currents.

Significanceof atSurfaces

The density of sea water at atmospheric pressure, expressed as
at = (P.wxo– 1) X 103, is often computed and represented in horizontal
charts or vertical sections. It is therefore necessary to study the sig-
nificance of u~surfaces, and in order to do so the following problem
will be considered: Can water masses be exchanged between different
places in the ocean space without altering the distribution of mass?

The same problem will first‘be considered for the atmosphere, assum-
ing that this is a perfect, dry gas. In such an atmosphere the potential
temperature means the temperature which the air would have if it were
brought by an adiabatic process to a standard pressure. The potential
temperature, d, is

where $ is the temperature at the pressurep, PO is the standard pressure,
and x = 1.4053 is the ratio of the two specific heatsof an ideal gas (c@/c, ).
In a dry atmosphere in which the temperaturevaries in spaceand in which
the vertical gradient differs from the gradient at adiabatic equilibrium,
it is always possible to define surfaces of equal potential temperature.
One characteristic of these surfaces is that along such a surface air masses
can be interchanged without altering the distribution of temperature
and pressureand, thus, without altering the distribution of mass.

Consider two air masses, one of temperature & at pressure PI, and
one of temperature 82 at pressure pz. If both have the same potential
temperature, it follows that

or
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The latter equations tell that if the air mass originally characterized
by &, PZ is brought adiabatically to pressure PI, its temperature has
been changed to 81, and, similarly, thst the air mass which originally
was characterized by @l, PI attains the temperature % if brought to
pressurepz. Thus, no alteration of the dktribution of mass is made by
an exchange, andsuch anexchange hasnoinfluence either onthe poten-
tial energy of the system or on the entropy of the system. In an ideal
gas the surfacesof potential temperature are therefore isentropic surfaces.

With regard to the ocean, the question to be considered is whether
surfaces of similar characteristics can be found there. Let one water
mass at tho geopotential depth D1 be characterized by salinity SI and
temperature 01, and another water mass at geopotential depth Lh be
characterized by salinity S2 and temperature & The densities in situ
of these small water masses can then be expressed as CTSl,~Aand U8*,d@y

Now consider that the mass at the geopotential depth D1 is moved
adiabatically to the geopotential depth Q. During this process the
temperature of the water mass will change adiabatically from t% to 91. .
and the density in Mu w1ll be a,,,e,,~z. Moving the other water mass
adiabatically from Dz to DI will change its temperature from % to &
If the two water masses are interchanged, the conditions

‘81, @i,% = %,$%%, ‘8%,%% = a8%,kDl (XII, 10)

must both be fulfilled if the distribution of mass shall remain unaltered,
These conditions can be fulfilled, however, only in the trivial case that
S1 = S2, ?91 G &f and DI = D2. This is best illustrated by a numerical
example. Assume the values

s, = 36.01 O/oo, & = 13.73”, DI = 200 dyn meters.
Sz = 34.60 0/00, ~, = 8.10”, Di = 700 dyn meters.

These values represent conditions encountered in the Atlantic Ocean, but
at a distance of about 50° of latitude.

The adiabatic change in temperature between the geopotential depths
of 200 and 700 dyn meters is 0.09°, and thus L%= 13.82, f?z= 8.01.
By means of the Hydrographic Tables of Bjerknes and collaborators, one
finds

~a,.Qt.D* = 30.24, U82,&z,Dt = 30.24, dHference = 0.00.
gal,%% = 27.97, ~*2,e%,I)i= 27.92, difference = 0.05.

Thus, the conditions (XII, 10) are not both fulfllled and the two water
masses cannot be interchanged without altering the distribution of mass.

It should also be observed that the mixing of two water masses that
are at the same depth and are of the same density in w-k, but of different
temperatures and salinities, produces water of a higher density. If,
at D = 700 dyn meters, equal parts of water S1 = 36.01 0/00,& = 13.82°,
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and & = 34.60 0/00,02 = 8.10°, respectively, are mixed, the resultingmix-
ture will have a salinity S = 35.305 0/00, and a temperature & = 10.96°.
The density in situof the two water masseswas identical (a,,~,~= 30.24),
but the resulting mixture has a higher density, 30.29. Similarly, if
equal parts of the water masses S1 = 36.01 O/.O,01 = 13.73°, D1 = 200
dyn meters, and St = 34.60 0/00,& = 8.01°, and D.2= 200 dyn meters
are mixed, the density in m“tuof the mixture will be 27.98, although the
densities of the two water masseswere 27.97 and 27,92, respectively.

This discussion leads to the conclusion that in the ocean no surfaces
exist along which interchange or mixing of water masses can take place
without altering the distribution of mass and thus altering the potential
energy and the entropy of the system (except in the trivial case that
isohaline and isothermal surfaces coincide with level surfaces). There
must exist, however, a set of surfaces of such character that the change
of potential energy and entropy is at a minimum if interchange and
mixing takes place along these surfaces. It is impossible to determine
the shape of these surfaces, but the at surfaces approximately satisfy the
conditions. In the preceding example, which represents very extreme
conditions, the two water masses were lying nearly on the same at
surface (a~l= 27.05, u,, = 26.97).

Thus, in the ocean, the u, surfaces can be considered as being nearly
equivalent to the isentropic surfaces in a dry atmosphere, and the c~
surfaces may therefore be called quasi-isentropic surfaces. The name
implies only that interchange or mixing of water massesalong atsurfaces
brings about small changes of the potential energy and of the entropy of
the body of water.

Stability

The change in a vertical direction of a, is nearly proportional to the
vertical dabitit~of the system. Assume that a water mass is displaced
vertically upward from the geopotential depth D2 to the geopotential
depth D1. The difference between the density of this mass and the
surrounding water (see p. 57) will then be

where Aa~,AS, and A@ represent the variations of at, S and @ between
the geopotentials Dl to D2, and where A19representsthe adiabatic change
of temperature. The water mass will evidently remain at rest in the new
surroundings if Ap = O; it will sink back to its original place if Ap is
positive, because it is then heavier than the surroundings; and will rise if
Ap is negative, because it is then lighter than the surroundings. The
acceleration of the mass will be proportional to AP/p. The reasoning
remains unaltered if we introduce geometric depths instead of geo-
potential. If the acceleration due to displacement along the short



STATICSAND KfNEMATICS

vertical diatxmceAZ is proportional to AP/p, then
to displacement along a vertical distance of unit
portional to Ap/pAz. IIesselberg (1918) has called

417

the acceleration due
length must be pro-
the term

(XII, 12)

the” stability.” Omitting the factor l/p, which differs little from unity,
one obtains, by means of equation (XII, 11),

(YG,DdS
E=10-8~+— —

; aeO,~da ap d6——— .
dS dz ao dz dfi dz

(XII, 13)

where d@/dz is the adiabatic change of temperature per unit length.
This term is small, and, because thee terms and the vertical gradients of
salinity and temperature also are small, it follows that, approximately,

E’ = 10-$ ~.

.
TABLE 62

STABILITY AT MICHAEL tYAR8 STATIONNO. 44
(Lat.28°37’N,Long.19°0SW. May% 1910)

Depth (m)
Temp.
(“c)

19.2
.31
.34
.24

18.65
.24

17.50
16.45
14.52
13.08
11.85
10.80
9.09

, Sol
7.27
6.40
4.52
2.34
2.43
2.49

?&nity
(“/00)

36.87
.85
.83
.79
.79
.’78
.56
.40
,02

35.77
.64
.54
.39
.37
,42
.35
.15

84.92
.60
.90

26.43
.38
.35
.34
.49
.58
.61
.73
.33
.99

27.13
.25
.43
.58
.74
.30
.87
.86
.87
.87

o . . . . . . . . . . . . . . . . . . . . .
10. . . . . . . . . . . . . . . . . . . . .
25. . . . . . . . . . . . . . . . . . . . .
50. . . . . . . . . . . . . . . . . . . . .
75. . . . . . . . . . . . . . . . . . . . .

100, . . . . . . . . . . . . . . . . . . . .
150. . . . . . . . . . . . . . . . . . . . .
200. . . . . . . . . . . . . . . . . . . . .
300. . . . . . . . . . . . . . . . . . . . .
400. . . . . . . . . . . . . . . . . . . . .
500. . . . . . . . . . . . . . . . . . . . .
600. . . . . . . . . . . . . . . . . . . . .
800. . . . . . . . . . . . . . . . . . . . .

1000. . . . . . . . . . . . . . . . . . . . .
1200. . . . . . . . . . . . . . . . . . . . .
1400. . . . . . . . . . . . . . . . . . . . .
2W . . . . . . . . . . . . . . . . . . . . .
mom. . . . . . . . . . . . . . . . . . .
4000. . . . . . . . . . . . . . . . . . . . .
5000. . . . . . . . . . . . . . . . . . . .

Hesselberg and Sverdrup (1914-15) have published tables by means
of which the terms of equation (XII, 13) are found, and give an example.
based on observations in the Atlantic Ocean on May, 1910,in lat. 28”37’N,
long. 19”08’W (Helland-Hansen, 1930). Thw example is reproduced in

–440
– 150
-13
610
390
34

270
160
120
150
130
100
89
S4
48
39
11.2
7.6
1.3

(XII, 14)

O’(cb/dz)

–400
–200
-40

%!
60

240
150
110
140
120
90
75
80
30

:;

:’ “
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table 62, in which the exact values of the stability are given under the
heading 108ZI,and the approximate values, obtained by means of equation
(XII, 14), under the heading 10$du,/dz. The two values agree fairly
well down to a depth of 1400 m. The negative values above 50 m indi-
cate instability,

Hesselberg and Sverdrup have also computed the order of magnitude
of the different terms in equation (XII, 13) and have shown that duJdz
is an accurate expression of the stability down to a depth of 100 m, but
that between 100 and 2000 m the terms containing emay have to be con-
sidered, and that below 2000 m all terms are important. The following
practical Wles can be given:

1. Above 100 m the stability is accurately expressed by means of
10-3 duJciz.

2. Below 100m the magnitude of the other termsof the exact equation
(XII, 13) should be examined if the numerical value of 10-B dut/dz is less
than 40 X 10-8.

The stability can also be expressed in a manner that is useful when
considering the stability of the deep water:

(XII, 15)

If the salinity does not vary with depth (dS/dz
in the deep water,

E
()

.3? f!?-;.
W dz

= O), as is often the case

(XII, 16)

Of the quantities in thk equation, t@/tM is negative, d6/dz is positive,
and d$/dz is negative if the temperature decreases with depth, but
positive if the temperature increases. The stratification will always be
stable if the temperature decreases with depth or increasesmore slowly
than the adiabatic, but indifferent equilibrium exists if dO/dz = d(?/dz,
and instability is found if dO/dz > df?/dz.

KINEMATICS

Vector Fields

A vector field can be completely represented by means of three sets
of charts, one of which shows the scalar field of the magnitude of the
vector and two of which show the direction of the vector in horizontal and
vertical planes. It can also be fully described by means of three sets of
scalar fields representingthe components of the vector along the principal
coordinate axes (V. Bj erknes and Wf erent collaborators, 1911). In
oceanography, one is concerned mainly with vectors that are horizontal,
such as velocity of ocean currents-that is, two-dimensional vectors.
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These can be completely represented by means of two sets of charts,
or one chart with two sets of curves--vector lines, which at all points give
the direction of the vector, and equisoalar curves, which give the mag-
nitude of the vector, Fig. 95 shows a schematic example of an arbitrary
two-dimensional vector field that is represented by means of vectors of
indicated direction and magnitude and by means of vector lines and
equiscslm curves of magnitude. ‘

Fig.95. Representationof a two-dimensionalvector
fieldby vectorsof indioateddirectionandmagnitudeand
by vectorlinesandequismlarcurves.

Vector lines cannot intersect except at singular points or lines, where
the magnitude of the vector is zero. Vector lines cannot begin or end
withh the vector field except at singular points, and vector lines are
contiriuous.

The simplest and most important singularities in a two-dimensional
vector field are shown in fig. 96: These are (1) points of divergence
(fig. 96A and C) or convergence (fig. 96B and D), at which an infinite
number of vector lines meet; (2) neutral poirtte, at which two or more
vector lines intersect (the example in fig. 9613shows a neutral point of the
first order in which two vector lines intersect—-that is, a hyperbolic
point); and (3) lines of divergence (fig. 96F) or convergence (fig. 96G),
from which an infinite number of vector lines diverge asymptotically
or to which an infinite number of vector lines converge asymptotioalIy.
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The significance of these singularities in the field of motion will be
explained below.

It is not necessary to enter upon all the characteristics of vector
fields or upon all the vector operations that can be performed, but two
important vector operations must be mentioned.

.

F G

Fig. 96. Singularities in a two-dimensional vector field. A and C, points of
divergence; B and D, points of convergence; E, neutral point of first order (hyperbolic
point); F, line of convergence; and #, line of divergence.

Assume that a vector A has the components A., AV, and A$. The
scalar quantity

is called the di~ergenceof the vector.
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The vector which has the components

is called the curl, or the vorticity, of the vector A. Divergence and
vorticity of fields of velocity or momentum have definite physical
interpretations.

Two representations of a vector that varies in space and time will
also be mentioned. A vector that has been observed at a given locality
during a certain time interval can be represented by means of a centraz
vectordiagram (fig. 97). In this diagram, all vectors are plotted from the
same point, and the time of ob-
servation is indicated at each
vector. Occasionally the end
points of the vector are joined by

~: fit

a curve on which the time of ob- t:”
servation is indicated and the Fig. 97. Time wuistion of a veotor
vectors themselves are omitted. representedby a centralvector diagram
This form of representation is (te.f$and a progressivevector diagram

commonly used when dealing
(rigM).

with periodic currents such as tidal currents. A central vector diagram
is also used extensively in pilot charts to indicate the frequency of winds
from given directions. In this case the direction of thewind is shown by
an arrow, and the frequency of wind from that direction is shown by the
length of the arrow.

If it can be assumed that the observations were made in a uniform
vector field, a progressive vector diagram is useful. Thk diagram is
constructed by plotting the second vector from the end point of the first,
and so on (fig. 97). When dealing with velocity, one can compute the
displacement due to the average velocity over a short interval of time.
When these displacements are plotted in a progressive vector diagram,
the resulting curve will show the trajectoryof a particle if the velocity
field is of such uniformity that the observed velocity can be considered
representative of the velocities in the neighborhood of the place of
observation. The vector that can be drawn from the beginning of the
first vector to the. end of the last shows the total displacement in the
entire time interval, and this displacement, divided by the time interval,
is the averagevelocity for the period.
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The Field of Motion andthe Equationof Continuity

THE FIELD OF MOTION. Among vector fields the field of motion is
of special importance. Several of the characteristics of the field of
motion can be dealt with without considering the forces which have
brought about or which maintain the motion, and these characteristics
form the subject of kinematics.

The velocity of a particle relative to a given coordinate system is
defined as v = dr/dt, where dr is an element of length in the direction
in which the particle moves. In a rectangular coordinate system the
velocity has the components

The velocity field can be completely described by the Lagrange or
by the Euler method. In the Lagrange method the coordinates of all
moving particles are represented as functions of time and of a threefold
multitude of parameters that together characterize all the moving
particles. From this representation the velocity of each particle, and,
thus, the velocity field, can be derived at any time.

The more convenient method by Euler will be employed in the follow-
ing. This method assumes that the velocity of all particles of the fluid
has been defined. On this assumption the velocity field is completely
described if the components of the velocity can be representedas functions
of the coordinates and of time:

v. = j’.(z,y,z,t),
% = AAWAO,
v. = j’z(z,y,z,t).

The characteristic difference between the two methods is that
Lagrange’s method focuses attention on the paths taken by all individual
particles, whereas Euler’s method focuses attention on the velocity at
each point in the coordinate space. In Euler’s method it is necessary,
however, to consider the motion of the individual particles in order to
find the acceleration. After a time dt, a particle that, at the time f,
was at the point (z,y,.z) and had the velocity components ~O(Z,y,Z,t),and
so on, will be at the point (z + dq y + dy, z + dz), and will have the
velocity components jz(x + dx, y+ d~, z + dz, t + dt), and so on.
Expanding in Taylor’s series, one obtains

j’.(x + dm, y + dy,, z + dz,, t + dtJ

The change in velocity in the time dt—--thatis, the acceleration of the
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individual particles under consideration-will therefore have the comp-
onents

dv= 8V= au= ~V= av=
2E=7F+ZV’+ZV”+ W’”
dv,

%’+~v=+$v, +$vs,Z=at
(XII, 17)

do. au.
at +

av.—=—
dt

gv. + 3VW+Z V,,a~

Thus, one has to deal with two time derivatives: the individual time
derivative, which represents the acceleration of the individual particles,
and the local time derivative, which represents the time change of the
velocity at a point in space and is called the local acceleration. The last
terms in equation (XII, 17) are often combined and called the $eki
acceleration.

The above development is applicable not only when considering
the velocity field, but also when considering any field of a property that
varies in space and time (p. 157). The velocity field is stakionarg when
the 100altime changes are zero:

~z=~_av. ~
at at -z=”

(XII, 18)

It should be observed that, when the individual acceleration vanishee
that is, when

(XII, 19)

the velocity field is stationary only if the j%id acceleration also disappears.
THE EQUATION OF CONTINUITY. Consider a cube of volume dzdgdz.

The mass of water that in unit time flows in parallel to the z axis is
equal to pv=dydz, and the mass that flows out is equal to

supposing that both p and VZvary in the direction of the x axis. The
net outflow per unit time and per unit volume in the direction of the
z axis is, therefore, d(pvJ/&u Eknihwly, the corresponding net outflow
along the y and z axes is 6’(pvJ/dy and’6@vJ/tkj respectively. The
net outflow from a cube of unit volume isthe sum of these terms, but
this outflow per unit time must also equal the decrease of the density
per unit time, -+/at. The condition

(XII, 20)
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must therefore always be fulfilled in order to maintain the continuity of
the system. This fundamentally important equation is called the equa-
tion of continuity. It tells that the local 10.ssoj mass, represented by
– c?p/&2 equals the divergence of the specific momentum (p. 420).

Now:

By means of equation (XII, 17), therefore,

1 dp 1 da au= + 4VU.—— =.— .— -&Y + $“
p dt adt ax+ (XII, 21)

The term on the left-hand side represents the rate of expansion of the
moving element. In this form the equation of continuity states that
the rate of expantion of the moving element equals the divergenceof the
ve$ocitg.

The equation of continuity is not valid in the above format a bound-
ary surface because no out-or inflow can take place there. In a direction
normal to a boundary a particle in that surface must move at the same
velocity as the surface itself. If the surface is rigid, no component
normal to the surface exists and the velocity must be directed parallel
to the surface. The condition

dn
‘“ = -a’

(XII, 22)

where n is directed normal to the boundary surface and dn/dt is the
velocity of the boundary surface in this direction, representsthe kinematic
boundary condition,which at the boundary takes the place of the equation
of continuity.

APPLICATION OF THE EQUATION OF CONTINUITY. At the sea surface
the kinematic boundary condition must be fulfilled. Designating the
vertical displacement of the sea surface relative to a certain level of
equilibrium by q, and taking this distance positive downward, because
the positive z axis is directed downward, one obtains

aq.
‘“0 = z’

that is, the vertical velocity at the sea surface is equal to the time change
of the elevation of the sea surface. If the sea surface remainsstationary,
one has V,,O= O. If the bottom is level, one has, similarly, V#,h= O,
where h is the depth to the bottom.

With stationary distribution of mass (dP/at = O) the equation of
continuity is reduced to

?*+~@!k)+?$?#. o.
ax ay (XII, 23)
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The total transport of mass through a vertical surface of unit width
reaching from the surface to the bottom has the components

Multiplying equation (XII, 23) by dz and integrating from the surface
to the bottom, one obtains

dMs dMu
—+—as au + (P%)o – (PVJO= o.

Here, vz,h = O, and at stationary sea level vZ,O= O. ‘Thus, the equation
is reduced to

divlkl=o, (XII, 24)

or, when the sea level remains daiionarg, the transport between the surface
and t~e bottiom is jree of divergence.

When dealing with conditions near the surface, one can consider the
density as constant and can introduce average values of the velocity
components % and OYwithin a top layer of thickness H. With these
simplifications, one obtains, putting V,,O = O,

If His small enough, the average velocity will not diiler much from the
surface velocity. Since a negative vertical velocity’ represents an
ascending motion, and a positive vertical velocity representsa descending
motion, equation (XII, 25) states that at a small distance below the
surface ascending motion is encountered if the surface currents are
diverging, and descending if the surface currents are converging. This
is an obvious conclusion, because, with diverging surface currents,
water is carried away from the area of divergence and must be replaced
by water that rises from some depth below the surface, and vice versa.
Thus, conclusions as to vertical motion can be based on charts showing
the surface currents.

For this ‘purpose, it is of advantage to write the divergence of a two-
dimensional vector field in a different form:

v dAn
divv=~+— —

.dl An dl ‘
(XII, 26)

where dl is an element of length in the.direction of flow and where An
representsthe distance between neighboring streamlines. If the velocity
is constant along the stream lines (dv/dt = 0)-,the flow is divergent when
the distance between the stream lines increases (dAn/dl > O), and
convergent when the distance decreases (dAn/dl < O). When, on the
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other hand, the distance between the stream lines remains constant
(dAn/dl = O), the divergence depends only upon the change of velocity
along the streamlines. Increasingvelocity (do/di > O)meansdivergence
accompanied by ascending motion below the surface if this surface
remains stationary, and decreasing velocity (6’v/dl < O) means con-
vergence associated with descending motion below the surface.

The equation of continuity is applicable not only to the field of mass
but also to the field of a dissolved substance that is not influenced by
biological activity. Let the mass of the substance per unit mass of
water bes. Multiplying the equation of continuity bys and integrating
from the surface to bottom, one obtains, if the vertical velocity at the
surface is zero,

!#+div P=O,

where

Under stationary conditions the local time change is zero, and one has

div P = O, div Al = O.

These equations have already been used in simplified form in order
to compute the relation between inflow and outflow of basins (p. 147).
Other simplifications have been introduced by Knudsen, Witting, and

Fig. 98. Trajectories(fulldrawnlines)
and streamlines(dashedlines)in a pro-
gressivesurfacewave.

Gehrke (Kriimmel, 1911, p. 509-
512).

STREAM LINES AND TRAJEC-
TORIU3. The vector lines show-
ing the direction of currents at
a given time are called the stream
lines, or the lines o.f jtow. The
paths followed by the moving
water particles, on the other hand,
are called the trajectories of the

particles. Stream lines and trajectories are identical only when the
motion is stationary, in which case the stream lines of the velocity field
remain unaltered in time, and a particle remains on the same stream
line.

The general difference between stream lines and trajectories can
be illustrated by considering the type of motion in a traveling surface
wave. The solid lines with arrows in fig. 98 show the streamlines in a
cross section of a surface wave that is supposed to move from left to right,
passing the point A. When the crest of the wave passes A, the motion
of the water particlesat A is in the direction of progress,but with decreas~
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ing velocities downward. At the troughs of the wave, at b and e, the
motion is in the opposite dhwction. Between A rmdb there is, therefore,
a divergence with descending motion, and between A and e there is a
convergence with aseendhg motion. The surface will therefore sink
at c and rise at d, meaning that the wave will travel from left to right.
When the point c reaches A, there will be no horizontal motion of the
water, but as b passesA the motion will be reversed. Thus, the pattern
of stream lines moves from left to right with the velocity at which the
wave proceeds.

It is supposed that the speed at which the wave travels is much
greater than the velocity of the single water particles that take part in
the wave motion. On this assumption a water particle that originally
was located below A will never be much removed from this vertical and
will return after one wave period to its original position. The trajectories
of such particles in this case are circles, the diameters of which decrease
with increasing distance from the surface, w shown in the figure. It is
evident that the trajectories bear no similarity to the stream Iines.

Representationsof the Field of Motion in the Sea

Trajectories of the surface water m~ses of the ocean can be deter-
mined by following the drift of floating bodies that are carried by the
currents. It is necessary, however, to exercise considerable care when
interpreting the available information about drift of bodies, because
often the wind has carried the body through the water. Furthermore, in
most cases, only the end points of the trajectory are known—that is, the
localities where the drift commenced and ended. Results of drift-bottle
experiments present an example of incomplete inforination as to trajec-
tories. As a rule, drift bottles are recovered on beaches, and a recon-
struction of the paths taken by the bottles from the places at which they
were released may be very hypothetical. The reconstruction may be
aided by additional information in the form of knowledge of distribution
of surface temperatures and salinities that are related to the currents,
or by information obtained from drift bottles that have been picked up
at sea. Systematic drift-bottle experiments have been conducted,
especially in coastal areas that are of importance to fisheries.

iik!reawzlivum of the actual surface or subsurface currents must be
based upon a very large number of direct current measurements, Where
the velocity is not stationary, simultaneous observations are required.
Direct measurementsof subsurface currents must be made from anchored
vessels, but this procedure is so diilicult that no simultrmeousmeasure-
ments that can be used for preparing charts of observed subsurface
currents for any area are available,

Numerous observations of surface currents, on the other hand, have
been derived from ships’ logs. Assume that the position of the vessel at
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noon of any day has been fixed by astronomical observations (point A
in fig. 99). From point A the course is set for point 1?, whkh, at the

A

Fig. 99. Determination of
surface currents by difference be-
tween positions by fixes and dead
reckoning.

average speed of the vessel, should be
reached in twenty-four hours. The fol-
lowing day, astronomic observations
show, however, that the vessel has not
reached point B, which would be the po-
sition by dead reckoning, but is at the po-
sition B’. It is then assumed that the
displacement BB’ is due to a current
which on an average has the direction B
to B’ and the velocity BB’/24 knots if
the distance BB’ is given in nautical
miles. Current velocities observed in
this manner are given either in knots or
in nautical miles per day. Direction and
velocity are uncertain if the displacement
is small, because an astronomical fix is
usually not accurate within 1 or 2 nauti-
cal miles, and the accuracv of a ~osition

by dead reckoning is as a rule less. Little weight can b; give; to dis-
placements of 5 miles or less in twenty-four hours.

The data on surface currents obtained from ships’ logs cannot be
used for construction of a synoptic chart of the currents, because the
number of simultaneousobservations is far too small. Data for months,
quarter years, or seasons have been compiled, however, from many
years’ observations, although even these are unsatisfactory for presenta-
tion of the average conditions because such data are not evenly dis-
tributed over large areas but are concentrated along trade routes. In
some charts the average direction in different localities is indicated by
arrows, and where strong currents prevail the average speed in nautical
miles per day is shown by a number. In other charts the surface flow
is representedby direction roses in which the number at the center of the
rose represents the percentage of no current, the lengths of the different
arrows representthe percentage of currents in the direction of the arrows,
and the figures at the ends of the arrows represent the average velocity
in miles per day of currents in the indicated direction. These charts
contain either averages for the year or for groups of months.

On the basis of such charts, averagesurface currents during seasons
or ,montbs have in some areas been represented by means of stream
lines and equiscalar curves of velocity. The principle advantage of this
representation is that it permits a rapid survey of the major features and
that it brings out the singularitiesof the stream lines, although in many
instances the interpretation of the data is uncertain and the details of
the chart will depend greatly upon personal judgment.
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In drawing these stream lines it is necessary to follow the rules
concerning vector lines (p. 419). The stream lines cannot intersect,
but an infinite number of stream lines can meet in a point of convergence
or divergence or can approach asymptotically a line of convergence or
diverge asymptotically from a line of divergence.

y / :

\

/

,.
ids 4.W 4s J-r 5.5” w

l?k. 100. Streamhues of the surfacecurrentsoff southeasternAfricain JUIY
(after Willimzik).

As an example, stream lines of the surface flow in July off southeast
Africa and to the south and southeast of Madagascar are shown in fig. 100.
The figure is based on a chart by Willimzik (1929), but a number of the
stream lines in the original chart have been omitted for the sake of
simplification. In the chart a number of the characteristic singularities
of a vector field are shown. Three hyperbolic points marked A appear,
four points of convergence marked B are seen, and a number of lines of
convergence marked C and lines of divergence marked D are present.
The stream lines do not everywhere run parallel to the coast, and the
representation involves the assumption of vertical motion at the coast,
where the horizonttilvelocity, however, must vanish.
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The most conspicuous feature is the continuous line of convergence
that to the southwest of Madagascar curves south and then runs west,
following lat. 35°S. At this line of convergence, the Subtropical Con-
vergence, which can be traced across the entire Indian Ocean and has its
counterpart in other oceans, descending motion must take place. Simi-
larly, descending motion must be present at the other lines of conver-
gence, at the points of convergence, and at the east coast of Madagascar,
whereas ascending motion must be present along the lines of divergence
and along the west coast of Madagascar, where the surface waters
flow away from the coast. Velocity curves have been omitted, for which
reason the conclusions as to vertical motion remain incomplete (see
p. 425). Near the coasts, eddies or countercurrents are indicated, and
these phenomena often represent characteristic features of the flow and
remain unaltered during long periods.

As has already been stated, representationsof surface flow by means
of stream lines have been prepared in a few cases only. As a rule, the
surface currents are shown by means of arrows. In some instances the
representation is based on ships’ observation of currents, but in other
cases the surface flow has been derived from observed distribution of
temperature and salinity, perhaps taking results of drift-bottle experi-
ments into account. The velocity of the currents may not be indicated
or may be shown by added numerals, or by the thickness of the arrows.
No uniform system has been adopted (see Defant, 1929), because the
available data are of such different kinds that in ‘each individual case
a form of representation must be selected which presents the available
information in the most satisfactory manner. Other examples of surface
flow will be given in the section dealing with the currents in specific areas.
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